File: express.md | Updated: 11/15/2025
Menu
Google Gemini Image Generation
Get started with Claude 3.7 Sonnet
Get started with OpenAI o3-mini
Generate Text with Chat Prompt
Generate Image with Chat Prompt
streamText Multi-Step Cookbook
Markdown Chatbot with Memoization
Generate Object with File Prompt through Form Submission
Model Context Protocol (MCP) Tools
Share useChat State Across Components
Human-in-the-Loop Agent with Next.js
Render Visual Interface in Chat
Generate Text with Chat Prompt
Generate Text with Image Prompt
Generate Object with a Reasoning Model
Stream Object with Image Prompt
Record Token Usage After Streaming Object
Record Final Object after Streaming Object
Model Context Protocol (MCP) Tools
Retrieval Augmented Generation
Copy markdown
===================================================================
You can use the AI SDK in an Express server to generate and stream text and objects to the client.
The examples start a simple HTTP server that listens on port 8080. You can e.g. test it using curl:
curl -X POST http://localhost:8080
The examples use the OpenAI gpt-4o model. Ensure that the OpenAI API key is set in the OPENAI_API_KEY environment variable.
Full example: github.com/vercel/ai/examples/express
You can use the pipeUIMessageStreamToResponse method to pipe the stream data to the server response.
index.ts
import { openai } from '@ai-sdk/openai';import { streamText } from 'ai';import express, { Request, Response } from 'express';
const app = express();
app.post('/', async (req: Request, res: Response) => { const result = streamText({ model: openai('gpt-4o'), prompt: 'Invent a new holiday and describe its traditions.', });
result.pipeUIMessageStreamToResponse(res);});
app.listen(8080, () => { console.log(`Example app listening on port ${8080}`);});
pipeUIMessageStreamToResponse can be used to send custom data to the client.
index.ts
import { openai } from '@ai-sdk/openai';import { createUIMessageStream, pipeUIMessageStreamToResponse, streamText,} from 'ai';import express, { Request, Response } from 'express';
const app = express();
app.post('/custom-data-parts', async (req: Request, res: Response) => { pipeUIMessageStreamToResponse({ response: res, stream: createUIMessageStream({ execute: async ({ writer }) => { writer.write({ type: 'start' });
writer.write({ type: 'data-custom', data: { custom: 'Hello, world!', }, });
const result = streamText({ model: openai('gpt-4o'), prompt: 'Invent a new holiday and describe its traditions.', });
writer.merge(result.toUIMessageStream({ sendStart: false })); }, }), });});
app.listen(8080, () => { console.log(`Example app listening on port ${8080}`);});
You can send a text stream to the client using pipeTextStreamToResponse.
index.ts
import { openai } from '@ai-sdk/openai';import { streamText } from 'ai';import express, { Request, Response } from 'express';
const app = express();
app.post('/', async (req: Request, res: Response) => { const result = streamText({ model: openai('gpt-4o'), prompt: 'Invent a new holiday and describe its traditions.', });
result.pipeTextStreamToResponse(res);});
app.listen(8080, () => { console.log(`Example app listening on port ${8080}`);});
On this page
Deploy and Scale AI Apps with Vercel.
Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.
Trusted by industry leaders: