File: node-http-server.md | Updated: 11/15/2025
Menu
Google Gemini Image Generation
Get started with Claude 3.7 Sonnet
Get started with OpenAI o3-mini
Generate Text with Chat Prompt
Generate Image with Chat Prompt
streamText Multi-Step Cookbook
Markdown Chatbot with Memoization
Generate Object with File Prompt through Form Submission
Model Context Protocol (MCP) Tools
Share useChat State Across Components
Human-in-the-Loop Agent with Next.js
Render Visual Interface in Chat
Generate Text with Chat Prompt
Generate Text with Image Prompt
Generate Object with a Reasoning Model
Stream Object with Image Prompt
Record Token Usage After Streaming Object
Record Final Object after Streaming Object
Model Context Protocol (MCP) Tools
Retrieval Augmented Generation
Copy markdown
===================================================================================================
You can use the AI SDK in a Node.js HTTP server to generate text and stream it to the client.
The examples start a simple HTTP server that listens on port 8080. You can e.g. test it using curl:
curl -X POST http://localhost:8080
The examples use the OpenAI gpt-4o model. Ensure that the OpenAI API key is set in the OPENAI_API_KEY environment variable.
Full example: github.com/vercel/ai/examples/node-http-server
You can use the pipeUIMessageStreamToResponse method to pipe the stream data to the server response.
index.ts
import { openai } from '@ai-sdk/openai';import { streamText } from 'ai';import { createServer } from 'http';
createServer(async (req, res) => { const result = streamText({ model: openai('gpt-4o'), prompt: 'Invent a new holiday and describe its traditions.', });
result.pipeUIMessageStreamToResponse(res);}).listen(8080);
createUIMessageStream and pipeUIMessageStreamToResponse can be used to send custom data to the client.
index.ts
import { openai } from '@ai-sdk/openai';import { createUIMessageStream, pipeUIMessageStreamToResponse, streamText,} from 'ai';import { createServer } from 'http';
createServer(async (req, res) => { switch (req.url) { case '/stream-data': { const stream = createUIMessageStream({ execute: ({ writer }) => { // write some custom data writer.write({ type: 'start' });
writer.write({ type: 'data-custom', data: { custom: 'Hello, world!', }, });
const result = streamText({ model: openai('gpt-4o'), prompt: 'Invent a new holiday and describe its traditions.', });
writer.merge( result.toUIMessageStream({ sendStart: false, onError: error => { // Error messages are masked by default for security reasons. // If you want to expose the error message to the client, you can do so here: return error instanceof Error ? error.message : String(error); }, }), ); }, });
pipeUIMessageStreamToResponse({ stream, response: res });
break; } }}).listen(8080);
You can send a text stream to the client using pipeTextStreamToResponse.
index.ts
import { openai } from '@ai-sdk/openai';import { streamText } from 'ai';import { createServer } from 'http';
createServer(async (req, res) => { const result = streamText({ model: openai('gpt-4o'), prompt: 'Invent a new holiday and describe its traditions.', });
result.pipeTextStreamToResponse(res);}).listen(8080);
On this page
Deploy and Scale AI Apps with Vercel.
Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.
Trusted by industry leaders: