📄 ai-sdk/cookbook/guides/gpt-5

File: gpt-5.md | Updated: 11/15/2025

Source: https://ai-sdk.dev/cookbook/guides/gpt-5

AI SDK

Menu

Guides

RAG Agent

Multi-Modal Agent

Slackbot Agent Guide

Natural Language Postgres

Get started with Computer Use

Get started with Gemini 2.5

Get started with Claude 4

OpenAI Responses API

Google Gemini Image Generation

Get started with Claude 3.7 Sonnet

Get started with Llama 3.1

Get started with GPT-5

Get started with OpenAI o1

Get started with OpenAI o3-mini

Get started with DeepSeek R1

Next.js

Generate Text

Generate Text with Chat Prompt

Generate Image with Chat Prompt

Stream Text

Stream Text with Chat Prompt

Stream Text with Image Prompt

Chat with PDFs

streamText Multi-Step Cookbook

Markdown Chatbot with Memoization

Generate Object

Generate Object with File Prompt through Form Submission

Stream Object

Call Tools

Call Tools in Multiple Steps

Model Context Protocol (MCP) Tools

Share useChat State Across Components

Human-in-the-Loop Agent with Next.js

Send Custom Body from useChat

Render Visual Interface in Chat

Caching Middleware

Node

Generate Text

Generate Text with Chat Prompt

Generate Text with Image Prompt

Stream Text

Stream Text with Chat Prompt

Stream Text with Image Prompt

Stream Text with File Prompt

Generate Object with a Reasoning Model

Generate Object

Stream Object

Stream Object with Image Prompt

Record Token Usage After Streaming Object

Record Final Object after Streaming Object

Call Tools

Call Tools with Image Prompt

Call Tools in Multiple Steps

Model Context Protocol (MCP) Tools

Manual Agent Loop

Web Search Agent

Embed Text

Embed Text in Batch

Intercepting Fetch Requests

Local Caching Middleware

Retrieval Augmented Generation

Knowledge Base Agent

API Servers

Node.js HTTP Server

Express

Hono

Fastify

Nest.js

React Server Components

Copy markdown

Get started with OpenAI GPT-5

========================================================================================================

With the release of OpenAI's GPT-5 model , there has never been a better time to start building AI applications with advanced capabilities like verbosity control, web search, and native multi-modal understanding.

The AI SDK is a powerful TypeScript toolkit for building AI applications with large language models (LLMs) like OpenAI GPT-5 alongside popular frameworks like React, Next.js, Vue, Svelte, Node.js, and more.

OpenAI GPT-5


OpenAI's GPT-5 represents their latest advancement in language models, offering powerful new features including verbosity control for tailored response lengths, integrated web search capabilities, reasoning summaries for transparency, and native support for text, images, audio, and PDFs. The model is available in three variants: gpt-5, gpt-5-mini for faster, more cost-effective processing, and gpt-5-nano for ultra-efficient operations.

Prompt Engineering for GPT-5

Here are the key strategies for effective prompting:

Core Principles

  1. Be precise and unambiguous: Avoid contradictory or ambiguous instructions. GPT-5 performs best with clear, explicit guidance.
  2. Use structured prompts: Leverage XML-like tags to organize different sections of your instructions for better clarity.
  3. Natural language works best: While being precise, write prompts as you would explain to a skilled colleague.

Prompting Techniques

1. Agentic Workflow Control

  • Adjust the reasoningEffort parameter to calibrate model autonomy

  • Set clear stop conditions and define explicit tool call budgets

  • Provide guidance on exploration depth and persistence

    // Example with reasoning effort controlconst result = await generateText({ model: openai('gpt-5'), prompt: 'Analyze this complex dataset and provide insights.', providerOptions: { openai: { reasoningEffort: 'high', // Increases autonomous exploration }, },});

2. Structured Prompt Format Use XML-like tags to organize your prompts:

<context_gathering>Goal: Extract key performance metrics from the reportMethod: Focus on quantitative data and year-over-year comparisonsEarly stop criteria: Stop after finding 5 key metrics</context_gathering>
<task>Analyze the attached financial report and identify the most important metrics.</task>

3. Tool Calling Best Practices

  • Use tool preambles to provide clear upfront plans
  • Define safe vs. unsafe actions for different tools
  • Create structured updates about tool call progress

4. Verbosity Control

  • Use the textVerbosity parameter to control response length programmatically
  • Override with natural language when needed for specific contexts
  • Balance between conciseness and completeness

5. Optimization Workflow

  • Start with a clear, simple prompt
  • Test and identify areas of ambiguity or confusion
  • Iteratively refine by removing contradictions
  • Consider using OpenAI's Prompt Optimizer tool for complex prompts
  • Document successful patterns for reuse

Getting Started with the AI SDK


The AI SDK is the TypeScript toolkit designed to help developers build AI-powered applications with React, Next.js, Vue, Svelte, Node.js, and more. Integrating LLMs into applications is complicated and heavily dependent on the specific model provider you use.

The AI SDK abstracts away the differences between model providers, eliminates boilerplate code for building chatbots, and allows you to go beyond text output to generate rich, interactive components.

At the center of the AI SDK is AI SDK Core , which provides a unified API to call any LLM. The code snippet below is all you need to call OpenAI GPT-5 with the AI SDK:

import { generateText } from 'ai';import { openai } from '@ai-sdk/openai';
const { text } = await generateText({  model: openai('gpt-5'),  prompt: 'Explain the concept of quantum entanglement.',});

Generating Structured Data

While text generation can be useful, you might want to generate structured JSON data. For example, you might want to extract information from text, classify data, or generate synthetic data. AI SDK Core provides two functions (generateObject and streamObject ) to generate structured data, allowing you to constrain model outputs to a specific schema.

import { generateObject } from 'ai';import { openai } from '@ai-sdk/openai';import { z } from 'zod';
const { object } = await generateObject({  model: openai('gpt-5'),  schema: z.object({    recipe: z.object({      name: z.string(),      ingredients: z.array(z.object({ name: z.string(), amount: z.string() })),      steps: z.array(z.string()),    }),  }),  prompt: 'Generate a lasagna recipe.',});

This code snippet will generate a type-safe recipe that conforms to the specified zod schema.

Verbosity Control

One of GPT-5's new features is verbosity control, allowing you to adjust response length without modifying your prompt:

import { generateText } from 'ai';import { openai } from '@ai-sdk/openai';
// Concise responseconst { text: conciseText } = await generateText({  model: openai('gpt-5'),  prompt: 'Explain quantum computing.',  providerOptions: {    openai: {      textVerbosity: 'low', // Produces terse, minimal responses    },  },});
// Detailed responseconst { text: detailedText } = await generateText({  model: openai('gpt-5'),  prompt: 'Explain quantum computing.',  providerOptions: {    openai: {      textVerbosity: 'high', // Produces comprehensive, detailed responses    },  },});

Web Search

GPT-5 can access real-time information through the integrated web search tool:

import { generateText } from 'ai';import { openai } from '@ai-sdk/openai';
const result = await generateText({  model: openai('gpt-5'),  prompt: 'What are the latest developments in AI this week?',  tools: {    web_search: openai.tools.webSearch({      searchContextSize: 'high',    }),  },});
// Access URL sourcesconst sources = result.sources;

Reasoning Summaries

For transparency into GPT-5's thought process, enable reasoning summaries:

import { openai } from '@ai-sdk/openai';import { streamText } from 'ai';
const result = streamText({  model: openai.responses('gpt-5'),  prompt:    'Solve this logic puzzle: If all roses are flowers and some flowers fade quickly, do all roses fade quickly?',  providerOptions: {    openai: {      reasoningSummary: 'detailed', // 'auto' for condensed or 'detailed' for comprehensive    },  },});
// Stream reasoning and text separatelyfor await (const part of result.fullStream) {  if (part.type === 'reasoning') {    console.log(part.textDelta);  } else if (part.type === 'text-delta') {    process.stdout.write(part.textDelta);  }}

Using Tools with the AI SDK

GPT-5 supports tool calling out of the box, allowing it to interact with external systems and perform discrete tasks. Here's an example of using tool calling with the AI SDK:

import { generateText, tool } from 'ai';import { openai } from '@ai-sdk/openai';import { z } from 'zod';
const { toolResults } = await generateText({  model: openai('gpt-5'),  prompt: 'What is the weather like today in San Francisco?',  tools: {    getWeather: tool({      description: 'Get the weather in a location',      inputSchema: z.object({        location: z.string().describe('The location to get the weather for'),      }),      execute: async ({ location }) => ({        location,        temperature: 72 + Math.floor(Math.random() * 21) - 10,      }),    }),  },});

Building Interactive Interfaces

AI SDK Core can be paired with AI SDK UI , another powerful component of the AI SDK, to streamline the process of building chat, completion, and assistant interfaces with popular frameworks like Next.js, Nuxt, and SvelteKit.

AI SDK UI provides robust abstractions that simplify the complex tasks of managing chat streams and UI updates on the frontend, enabling you to develop dynamic AI-driven interfaces more efficiently.

With four main hooks — useChat , useCompletion , and useObject — you can incorporate real-time chat capabilities, text completions, streamed JSON, and interactive assistant features into your app.

Let's explore building a chatbot with Next.js , the AI SDK, and OpenAI GPT-5:

In a new Next.js application, first install the AI SDK and the OpenAI provider:

pnpm install ai @ai-sdk/openai @ai-sdk/react

Then, create a route handler for the chat endpoint:

app/api/chat/route.ts

import { openai } from '@ai-sdk/openai';import { convertToModelMessages, streamText, UIMessage } from 'ai';
// Allow responses up to 30 secondsexport const maxDuration = 30;
export async function POST(req: Request) {  const { messages }: { messages: UIMessage[] } = await req.json();
  const result = streamText({    model: openai('gpt-5'),    messages: convertToModelMessages(messages),  });
  return result.toUIMessageStreamResponse();}

Finally, update the root page (app/page.tsx) to use the useChat hook:

app/page.tsx

'use client';
import { useChat } from '@ai-sdk/react';import { useState } from 'react';
export default function Page() {  const [input, setInput] = useState('');  const { messages, sendMessage } = useChat({});
  return (    <>      {messages.map(message => (        <div key={message.id}>          {message.role === 'user' ? 'User: ' : 'AI: '}          {message.parts.map((part, index) => {            if (part.type === 'text') {              return <span key={index}>{part.text}</span>;            }            return null;          })}        </div>      ))}      <form        onSubmit={e => {          e.preventDefault();          if (input.trim()) {            sendMessage({ text: input });            setInput('');          }        }}      >        <input          name="prompt"          value={input}          onChange={e => setInput(e.target.value)}        />        <button type="submit">Submit</button>      </form>    </>  );}

The useChat hook on your root page (app/page.tsx) will make a request to your AI provider endpoint (app/api/chat/route.ts) whenever the user submits a message. The messages are then displayed in the chat UI.

Get Started


Ready to get started? Here's how you can dive in:

  1. Explore the documentation at ai-sdk.dev/docs to understand the full capabilities of the AI SDK.
  2. Check out practical examples at ai-sdk.dev/cookbook to see the SDK in action and get inspired for your own projects.
  3. Dive deeper with advanced guides on topics like Retrieval-Augmented Generation (RAG) and multi-modal chat at ai-sdk.dev/cookbook/guides .
  4. Check out ready-to-deploy AI templates at vercel.com/templates?type=ai .

On this page

Get started with OpenAI GPT-5

OpenAI GPT-5

Prompt Engineering for GPT-5

Core Principles

Prompting Techniques

Getting Started with the AI SDK

Generating Structured Data

Verbosity Control

Web Search

Reasoning Summaries

Using Tools with the AI SDK

Building Interactive Interfaces

Get Started

Deploy and Scale AI Apps with Vercel.

Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.

Trusted by industry leaders:

  • OpenAI
  • Photoroom
  • leonardo-ai Logoleonardo-ai Logo
  • zapier Logozapier Logo

Talk to an expert