📄 ai-sdk/cookbook/next/call-tools

File: call-tools.md | Updated: 11/15/2025

Source: https://ai-sdk.dev/cookbook/next/call-tools

AI SDK

Menu

Guides

RAG Agent

Multi-Modal Agent

Slackbot Agent Guide

Natural Language Postgres

Get started with Computer Use

Get started with Gemini 2.5

Get started with Claude 4

OpenAI Responses API

Google Gemini Image Generation

Get started with Claude 3.7 Sonnet

Get started with Llama 3.1

Get started with GPT-5

Get started with OpenAI o1

Get started with OpenAI o3-mini

Get started with DeepSeek R1

Next.js

Generate Text

Generate Text with Chat Prompt

Generate Image with Chat Prompt

Stream Text

Stream Text with Chat Prompt

Stream Text with Image Prompt

Chat with PDFs

streamText Multi-Step Cookbook

Markdown Chatbot with Memoization

Generate Object

Generate Object with File Prompt through Form Submission

Stream Object

Call Tools

Call Tools in Multiple Steps

Model Context Protocol (MCP) Tools

Share useChat State Across Components

Human-in-the-Loop Agent with Next.js

Send Custom Body from useChat

Render Visual Interface in Chat

Caching Middleware

Node

Generate Text

Generate Text with Chat Prompt

Generate Text with Image Prompt

Stream Text

Stream Text with Chat Prompt

Stream Text with Image Prompt

Stream Text with File Prompt

Generate Object with a Reasoning Model

Generate Object

Stream Object

Stream Object with Image Prompt

Record Token Usage After Streaming Object

Record Final Object after Streaming Object

Call Tools

Call Tools with Image Prompt

Call Tools in Multiple Steps

Model Context Protocol (MCP) Tools

Manual Agent Loop

Web Search Agent

Embed Text

Embed Text in Batch

Intercepting Fetch Requests

Local Caching Middleware

Retrieval Augmented Generation

Knowledge Base Agent

API Servers

Node.js HTTP Server

Express

Hono

Fastify

Nest.js

React Server Components

Copy markdown

Call Tools

=====================================================================

Some models allow developers to provide a list of tools that can be called at any time during a generation. This is useful for extending the capabilities of a language model to either use logic or data to interact with systems external to the model.

http://localhost:3000

User: How is it going?

Assistant: All good, how may I help you?

What is the weather in Paris and New York?

Send Message

Client


Let's create a React component that imports the useChat hook from the @ai-sdk/react module. The useChat hook will call the /api/chat endpoint when the user sends a message. The endpoint will generate the assistant's response based on the conversation history and stream it to the client. If the assistant responds with a tool call, the hook will automatically display them as well.

app/page.tsx

'use client';
import { useChat } from '@ai-sdk/react';import { DefaultChatTransport } from 'ai';import { useState } from 'react';import type { ChatMessage } from './api/chat/route';
export default function Page() {  const [input, setInput] = useState('');
  const { messages, sendMessage } = useChat<ChatMessage>({    transport: new DefaultChatTransport({      api: '/api/chat',    }),  });
  return (    <div>      <input        className="border"        value={input}        onChange={event => {          setInput(event.target.value);        }}        onKeyDown={async event => {          if (event.key === 'Enter') {            sendMessage({              text: input,            });            setInput('');          }        }}      />
      {messages.map((message, index) => (        <div key={index}>          {message.parts.map(part => {            switch (part.type) {              case 'text':                return <div key={`${message.id}-text`}>{part.text}</div>;              case 'tool-getWeather':                return (                  <div key={`${message.id}-weather`}>                    {JSON.stringify(part, null, 2)}                  </div>                );            }          })}        </div>      ))}    </div>  );}

Server


You will create a new route at /api/chat that will use the streamText function from the ai module to generate the assistant's response based on the conversation history.

You will use the tools parameter to specify a tool called celsiusToFahrenheit that will convert a user given value in celsius to fahrenheit.

You will also use zod to specify the schema for the celsiusToFahrenheit function's parameters.

app/api/chat/route.ts

import { openai } from '@ai-sdk/openai';import {  type InferUITools,  type ToolSet,  type UIDataTypes,  type UIMessage,  convertToModelMessages,  stepCountIs,  streamText,  tool,} from 'ai';import { z } from 'zod';
const tools = {  getWeather: tool({    description: 'Get the weather for a location',    inputSchema: z.object({      city: z.string().describe('The city to get the weather for'),      unit: z        .enum(['C', 'F'])        .describe('The unit to display the temperature in'),    }),    execute: async ({ city, unit }) => {      const weather = {        value: 24,        description: 'Sunny',      };
      return `It is currently ${weather.value}°${unit} and ${weather.description} in ${city}!`;    },  }),} satisfies ToolSet;
export type ChatTools = InferUITools<typeof tools>;
export type ChatMessage = UIMessage<never, UIDataTypes, ChatTools>;
export async function POST(req: Request) {  const { messages }: { messages: ChatMessage[] } = await req.json();
  const result = streamText({    model: openai('gpt-4o'),    system: 'You are a helpful assistant.',    messages: convertToModelMessages(messages),    stopWhen: stepCountIs(5),    tools,  });
  return result.toUIMessageStreamResponse();}

View Example on GitHub

On this page

Call Tools

Client

Server

Deploy and Scale AI Apps with Vercel.

Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.

Trusted by industry leaders:

  • OpenAI
  • Photoroom
  • leonardo-ai Logoleonardo-ai Logo
  • zapier Logozapier Logo

Talk to an expert