File: call-tools-multiple-steps.md | Updated: 11/15/2025
Menu
Google Gemini Image Generation
Get started with Claude 3.7 Sonnet
Get started with OpenAI o3-mini
Generate Text with Chat Prompt
Generate Image with Chat Prompt
streamText Multi-Step Cookbook
Markdown Chatbot with Memoization
Generate Object with File Prompt through Form Submission
Model Context Protocol (MCP) Tools
Share useChat State Across Components
Human-in-the-Loop Agent with Next.js
Render Visual Interface in Chat
Generate Text with Chat Prompt
Generate Text with Image Prompt
Generate Object with a Reasoning Model
Stream Object with Image Prompt
Record Token Usage After Streaming Object
Record Final Object after Streaming Object
Model Context Protocol (MCP) Tools
Retrieval Augmented Generation
Copy markdown
========================================================================================================================
Some language models are great at calling tools in multiple steps to achieve a more complex task. This is particularly useful when the tools are dependent on each other and need to be executed in sequence during the same generation step.
Let's create a React component that imports the useChat hook from the @ai-sdk/react module. The useChat hook will call the /api/chat endpoint when the user sends a message. The endpoint will generate the assistant's response based on the conversation history and stream it to the client. If the assistant responds with a tool call, the hook will automatically display them as well.
app/page.tsx
'use client';
import { useChat } from '@ai-sdk/react';import { DefaultChatTransport } from 'ai';import { useState } from 'react';import type { ChatMessage } from './api/chat/route';
export default function Page() { const [input, setInput] = useState('');
const { messages, sendMessage } = useChat<ChatMessage>({ transport: new DefaultChatTransport({ api: '/api/chat', }), });
return ( <div> <input className="border" value={input} onChange={event => { setInput(event.target.value); }} onKeyDown={async event => { if (event.key === 'Enter') { sendMessage({ text: input, }); setInput(''); } }} />
{messages.map((message, index) => ( <div key={index}> {message.parts.map((part, i) => { switch (part.type) { case 'text': return <div key={`${message.id}-text`}>{part.text}</div>; case 'tool-getLocation': case 'tool-getWeather': return ( <div key={`${message.id}-weather-${i}`}> {JSON.stringify(part, null, 2)} </div> ); } })} </div> ))} </div> );}
You will create a new route at /api/chat that will use the streamText function from the ai module to generate the assistant's response based on the conversation history.
You will use the tools
parameter to specify two tools called getLocation and getWeather that will first get the user's location and then use it to get the weather.
You will add the two functions mentioned earlier and use zod to specify the schema for its parameters.
To call tools in multiple steps, you can use the stopWhen option to specify the stopping conditions for when the model generates a tool call. In this example, you will set it to stepCountIs(5) to allow for multiple consecutive tool calls (steps).
app/api/chat/route.ts
import { openai } from '@ai-sdk/openai';import { type InferUITools, type ToolSet, type UIDataTypes, type UIMessage, convertToModelMessages, stepCountIs, streamText, tool,} from 'ai';import { z } from 'zod';
const tools = { getLocation: tool({ description: 'Get the location of the user', inputSchema: z.object({}), execute: async () => { const location = { lat: 37.7749, lon: -122.4194 }; return `Your location is at latitude ${location.lat} and longitude ${location.lon}`; }, }), getWeather: tool({ description: 'Get the weather for a location', inputSchema: z.object({ city: z.string().describe('The city to get the weather for'), unit: z .enum(['C', 'F']) .describe('The unit to display the temperature in'), }), execute: async ({ city, unit }) => { const weather = { value: 24, description: 'Sunny', };
return `It is currently ${weather.value}°${unit} and ${weather.description} in ${city}!`; }, }),} satisfies ToolSet;
export type ChatTools = InferUITools<typeof tools>;
export type ChatMessage = UIMessage<never, UIDataTypes, ChatTools>;
export async function POST(req: Request) { const { messages }: { messages: ChatMessage[] } = await req.json();
const result = streamText({ model: openai('gpt-4o'), system: 'You are a helpful assistant.', messages: convertToModelMessages(messages), stopWhen: stepCountIs(5), tools, });
return result.toUIMessageStreamResponse();}
On this page
Deploy and Scale AI Apps with Vercel.
Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.
Trusted by industry leaders: