File: generate-image-with-chat-prompt.md | Updated: 11/15/2025
Menu
Google Gemini Image Generation
Get started with Claude 3.7 Sonnet
Get started with OpenAI o3-mini
Generate Text with Chat Prompt
Generate Image with Chat Prompt
streamText Multi-Step Cookbook
Markdown Chatbot with Memoization
Generate Object with File Prompt through Form Submission
Model Context Protocol (MCP) Tools
Share useChat State Across Components
Human-in-the-Loop Agent with Next.js
Render Visual Interface in Chat
Generate Text with Chat Prompt
Generate Text with Image Prompt
Generate Object with a Reasoning Model
Stream Object with Image Prompt
Record Token Usage After Streaming Object
Record Final Object after Streaming Object
Model Context Protocol (MCP) Tools
Retrieval Augmented Generation
Copy markdown
Generate Image with Chat Prompt
====================================================================================================================================
When building a chatbot, you may want to allow the user to generate an image. This can be done by creating a tool that generates an image using the experimental_generateImage
function from the AI SDK.
Let's create an endpoint at /api/chat that generates the assistant's response based on the conversation history. You will also define a tool called generateImage that will generate an image based on the assistant's response.
tools/generate-image.ts
import { openai } from '@ai-sdk/openai';import { experimental_generateImage, tool } from 'ai';import z from 'zod';
export const generateImage = tool({ description: 'Generate an image', inputSchema: z.object({ prompt: z.string().describe('The prompt to generate the image from'), }), execute: async ({ prompt }) => { const { image } = await experimental_generateImage({ model: openai.imageModel('dall-e-3'), prompt, }); // in production, save this image to blob storage and return a URL return { image: image.base64, prompt }; },});
app/api/chat/route.ts
import { openai } from '@ai-sdk/openai';import { convertToModelMessages, type InferUITools, stepCountIs, streamText, type UIMessage,} from 'ai';
import { generateImage } from '@/tools/generate-image';
const tools = { generateImage,};
export type ChatTools = InferUITools<typeof tools>;
export async function POST(request: Request) { const { messages }: { messages: UIMessage[] } = await request.json();
const result = streamText({ model: openai('gpt-4o'), messages: convertToModelMessages(messages), stopWhen: stepCountIs(5), tools, });
return result.toUIMessageStreamResponse();}
In production, you should save the generated image to a blob storage and return a URL instead of the base64 image data. If you don't, the base64 image data will be sent to the model which may cause the generation to fail.
Let's create a simple chat interface with useChat. You will call the /api/chat endpoint to generate the assistant's response. If the assistant's response contains a generateImage tool invocation, you will display the tool result (the image in base64 format and the prompt) using the Next Image component.
app/page.tsx
'use client';
import { useChat } from '@ai-sdk/react';import { DefaultChatTransport, type UIMessage } from 'ai';import Image from 'next/image';import { type FormEvent, useState } from 'react';import type { ChatTools } from './api/chat/route';
type ChatMessage = UIMessage<never, never, ChatTools>;
export default function Chat() { const [input, setInput] = useState('');
const { messages, sendMessage } = useChat<ChatMessage>({ transport: new DefaultChatTransport({ api: '/api/chat', }), });
const handleInputChange = (event: React.ChangeEvent<HTMLInputElement>) => { setInput(event.target.value); };
const handleSubmit = async (event: FormEvent<HTMLFormElement>) => { event.preventDefault();
sendMessage({ parts: [{ type: 'text', text: input }], });
setInput(''); };
return ( <div className="flex flex-col w-full max-w-md py-24 mx-auto stretch"> <div className="space-y-4"> {messages.map(message => ( <div key={message.id} className="whitespace-pre-wrap"> <div key={message.id}> <div className="font-bold">{message.role}</div> {message.parts.map((part, partIndex) => { const { type } = part;
if (type === 'text') { return ( <div key={`${message.id}-part-${partIndex}`}> {part.text} </div> ); }
if (type === 'tool-generateImage') { const { state, toolCallId } = part;
if (state === 'input-available') { return ( <div key={`${message.id}-part-${partIndex}`}> Generating image... </div> ); }
if (state === 'output-available') { const { input, output } = part;
return ( <Image key={toolCallId} src={`data:image/png;base64,${output.image}`} alt={input.prompt} height={400} width={400} /> ); } } })} </div> </div> ))} </div>
<form onSubmit={handleSubmit}> <input className="fixed bottom-0 w-full max-w-md p-2 mb-8 border border-gray-300 rounded shadow-xl" value={input} placeholder="Say something..." onChange={handleInputChange} /> </form> </div> );}
On this page
Generate Image with Chat Prompt
Deploy and Scale AI Apps with Vercel.
Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.
Trusted by industry leaders: