File: generate-object.md | Updated: 11/15/2025
Menu
Google Gemini Image Generation
Get started with Claude 3.7 Sonnet
Get started with OpenAI o3-mini
Generate Text with Chat Prompt
Generate Image with Chat Prompt
streamText Multi-Step Cookbook
Markdown Chatbot with Memoization
Generate Object with File Prompt through Form Submission
Model Context Protocol (MCP) Tools
Share useChat State Across Components
Human-in-the-Loop Agent with Next.js
Render Visual Interface in Chat
Generate Text with Chat Prompt
Generate Text with Image Prompt
Generate Object with a Reasoning Model
Stream Object with Image Prompt
Record Token Usage After Streaming Object
Record Final Object after Streaming Object
Model Context Protocol (MCP) Tools
Retrieval Augmented Generation
Copy markdown
====================================================================================
Earlier functions like generateText and streamText gave us the ability to generate unstructured text. However, if you want to generate structured data like JSON, you can provide a schema that describes the structure of your desired object to the generateObject function.
The function requires you to provide a schema using zod , a library for defining schemas for JavaScript objects. By using zod, you can also use it to validate the generated object and ensure that it conforms to the specified structure.
http://localhost:3000
View Notifications
Let's create a simple React component that will make a POST request to the /api/completion endpoint when a button is clicked. The endpoint will return the generated object based on the input prompt and we'll display it.
app/page.tsx
'use client';
import { useState } from 'react';
export default function Page() { const [generation, setGeneration] = useState(); const [isLoading, setIsLoading] = useState(false);
return ( <div> <div onClick={async () => { setIsLoading(true);
await fetch('/api/completion', { method: 'POST', body: JSON.stringify({ prompt: 'Messages during finals week.', }), }).then(response => { response.json().then(json => { setGeneration(json.notifications); setIsLoading(false); }); }); }} > Generate </div>
{isLoading ? ( 'Loading...' ) : ( <pre>{JSON.stringify(generation, null, 2)}</pre> )} </div> );}
Let's create a route handler for /api/completion that will generate an object based on the input prompt. The route will call the generateObject function from the ai module, which will then generate an object based on the input prompt and return it.
app/api/completion/route.ts
import { generateObject } from 'ai';import { openai } from '@ai-sdk/openai';import { z } from 'zod';
export async function POST(req: Request) { const { prompt }: { prompt: string } = await req.json();
const result = await generateObject({ model: openai('gpt-4o'), system: 'You generate three notifications for a messages app.', prompt, schema: z.object({ notifications: z.array( z.object({ name: z.string().describe('Name of a fictional person.'), message: z.string().describe('Do not use emojis or links.'), minutesAgo: z.number(), }), ), }), });
return result.toJsonResponse();}
On this page
Deploy and Scale AI Apps with Vercel.
Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.
Trusted by industry leaders: