File: mcp-tools.md | Updated: 11/15/2025
Menu
Google Gemini Image Generation
Get started with Claude 3.7 Sonnet
Get started with OpenAI o3-mini
Generate Text with Chat Prompt
Generate Image with Chat Prompt
streamText Multi-Step Cookbook
Markdown Chatbot with Memoization
Generate Object with File Prompt through Form Submission
Model Context Protocol (MCP) Tools
Share useChat State Across Components
Human-in-the-Loop Agent with Next.js
Render Visual Interface in Chat
Generate Text with Chat Prompt
Generate Text with Image Prompt
Generate Object with a Reasoning Model
Stream Object with Image Prompt
Record Token Usage After Streaming Object
Record Final Object after Streaming Object
Model Context Protocol (MCP) Tools
Retrieval Augmented Generation
Copy markdown
==================================================================
The AI SDK supports Model Context Protocol (MCP) tools by offering a lightweight client that exposes a tools method for retrieving tools from a MCP server. After use, the client should always be closed to release resources.
Let's create a route handler for /api/completion that will generate text based on the input prompt and MCP tools that can be called at any time during a generation. The route will call the streamText function from the ai module, which will then generate text based on the input prompt and stream it to the client.
If you prefer to use the official transports (optional), install the official TypeScript SDK for Model Context Protocol:
pnpm install @modelcontextprotocol/sdk
app/api/completion/route.ts
import { experimental_createMCPClient, streamText } from '@ai-sdk/mcp';import { Experimental_StdioMCPTransport } from '@ai-sdk/mcp/mcp-stdio';import { openai } from '@ai-sdk/openai';// Optional: Official transports if you prefer them// import { StdioClientTransport } from '@modelcontextprotocol/sdk/client/stdio';// import { SSEClientTransport } from '@modelcontextprotocol/sdk/client/sse';// import { StreamableHTTPClientTransport } from '@modelcontextprotocol/sdk/client/streamableHttp';
export async function POST(req: Request) { const { prompt }: { prompt: string } = await req.json();
try { // Initialize an MCP client to connect to a `stdio` MCP server (local only): const transport = new Experimental_StdioMCPTransport({ command: 'node', args: ['src/stdio/dist/server.js'], });
const stdioClient = await experimental_createMCPClient({ transport, });
// Connect to an HTTP MCP server directly via the client transport config const httpClient = await experimental_createMCPClient({ transport: { type: 'http', url: 'http://localhost:3000/mcp',
// optional: configure headers // headers: { Authorization: 'Bearer my-api-key' },
// optional: provide an OAuth client provider for automatic authorization // authProvider: myOAuthClientProvider, }, });
// Connect to a Server-Sent Events (SSE) MCP server directly via the client transport config const sseClient = await experimental_createMCPClient({ transport: { type: 'sse', url: 'http://localhost:3000/sse',
// optional: configure headers // headers: { Authorization: 'Bearer my-api-key' },
// optional: provide an OAuth client provider for automatic authorization // authProvider: myOAuthClientProvider, }, });
// Alternatively, you can create transports with the official SDKs instead of direct config: // const httpTransport = new StreamableHTTPClientTransport(new URL('http://localhost:3000/mcp')); // const httpClient = await experimental_createMCPClient({ transport: httpTransport }); // const sseTransport = new SSEClientTransport(new URL('http://localhost:3000/sse')); // const sseClient = await experimental_createMCPClient({ transport: sseTransport });
const toolSetOne = await stdioClient.tools(); const toolSetTwo = await httpClient.tools(); const toolSetThree = await sseClient.tools(); const tools = { ...toolSetOne, ...toolSetTwo, ...toolSetThree, // note: this approach causes subsequent tool sets to override tools with the same name };
const response = await streamText({ model: openai('gpt-4o'), tools, prompt, // When streaming, the client should be closed after the response is finished: onFinish: async () => { await stdioClient.close(); await httpClient.close(); await sseClient.close(); }, // Closing clients onError is optional // - Closing: Immediately frees resources, prevents hanging connections // - Not closing: Keeps connection open for retries onError: async error => { await stdioClient.close(); await httpClient.close(); await sseClient.close(); }, });
return response.toDataStreamResponse(); } catch (error) { return new Response('Internal Server Error', { status: 500 }); }}
Let's create a simple React component that imports the useCompletion hook from the @ai-sdk/react module. The useCompletion hook will call the /api/completion endpoint when a button is clicked. The endpoint will generate text based on the input prompt and stream it to the client.
app/page.tsx
'use client';
import { useCompletion } from '@ai-sdk/react';
export default function Page() { const { completion, complete } = useCompletion({ api: '/api/completion', });
return ( <div> <div onClick={async () => { await complete( 'Please schedule a call with Sonny and Robby for tomorrow at 10am ET for me!', ); }} > Schedule a call </div>
{completion} </div> );}
On this page
Deploy and Scale AI Apps with Vercel.
Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.
Trusted by industry leaders: