📄 ai-sdk/cookbook/next/mcp-tools

File: mcp-tools.md | Updated: 11/15/2025

Source: https://ai-sdk.dev/cookbook/next/mcp-tools

AI SDK

Menu

Guides

RAG Agent

Multi-Modal Agent

Slackbot Agent Guide

Natural Language Postgres

Get started with Computer Use

Get started with Gemini 2.5

Get started with Claude 4

OpenAI Responses API

Google Gemini Image Generation

Get started with Claude 3.7 Sonnet

Get started with Llama 3.1

Get started with GPT-5

Get started with OpenAI o1

Get started with OpenAI o3-mini

Get started with DeepSeek R1

Next.js

Generate Text

Generate Text with Chat Prompt

Generate Image with Chat Prompt

Stream Text

Stream Text with Chat Prompt

Stream Text with Image Prompt

Chat with PDFs

streamText Multi-Step Cookbook

Markdown Chatbot with Memoization

Generate Object

Generate Object with File Prompt through Form Submission

Stream Object

Call Tools

Call Tools in Multiple Steps

Model Context Protocol (MCP) Tools

Share useChat State Across Components

Human-in-the-Loop Agent with Next.js

Send Custom Body from useChat

Render Visual Interface in Chat

Caching Middleware

Node

Generate Text

Generate Text with Chat Prompt

Generate Text with Image Prompt

Stream Text

Stream Text with Chat Prompt

Stream Text with Image Prompt

Stream Text with File Prompt

Generate Object with a Reasoning Model

Generate Object

Stream Object

Stream Object with Image Prompt

Record Token Usage After Streaming Object

Record Final Object after Streaming Object

Call Tools

Call Tools with Image Prompt

Call Tools in Multiple Steps

Model Context Protocol (MCP) Tools

Manual Agent Loop

Web Search Agent

Embed Text

Embed Text in Batch

Intercepting Fetch Requests

Local Caching Middleware

Retrieval Augmented Generation

Knowledge Base Agent

API Servers

Node.js HTTP Server

Express

Hono

Fastify

Nest.js

React Server Components

Copy markdown

MCP Tools

==================================================================

The AI SDK supports Model Context Protocol (MCP) tools by offering a lightweight client that exposes a tools method for retrieving tools from a MCP server. After use, the client should always be closed to release resources.

Server


Let's create a route handler for /api/completion that will generate text based on the input prompt and MCP tools that can be called at any time during a generation. The route will call the streamText function from the ai module, which will then generate text based on the input prompt and stream it to the client.

If you prefer to use the official transports (optional), install the official TypeScript SDK for Model Context Protocol:

pnpm install @modelcontextprotocol/sdk

app/api/completion/route.ts

import { experimental_createMCPClient, streamText } from '@ai-sdk/mcp';import { Experimental_StdioMCPTransport } from '@ai-sdk/mcp/mcp-stdio';import { openai } from '@ai-sdk/openai';// Optional: Official transports if you prefer them// import { StdioClientTransport } from '@modelcontextprotocol/sdk/client/stdio';// import { SSEClientTransport } from '@modelcontextprotocol/sdk/client/sse';// import { StreamableHTTPClientTransport } from '@modelcontextprotocol/sdk/client/streamableHttp';
export async function POST(req: Request) {  const { prompt }: { prompt: string } = await req.json();
  try {    // Initialize an MCP client to connect to a `stdio` MCP server (local only):    const transport = new Experimental_StdioMCPTransport({      command: 'node',      args: ['src/stdio/dist/server.js'],    });
    const stdioClient = await experimental_createMCPClient({      transport,    });
    // Connect to an HTTP MCP server directly via the client transport config    const httpClient = await experimental_createMCPClient({      transport: {        type: 'http',        url: 'http://localhost:3000/mcp',
        // optional: configure headers        // headers: { Authorization: 'Bearer my-api-key' },
        // optional: provide an OAuth client provider for automatic authorization        // authProvider: myOAuthClientProvider,      },    });
    // Connect to a Server-Sent Events (SSE) MCP server directly via the client transport config    const sseClient = await experimental_createMCPClient({      transport: {        type: 'sse',        url: 'http://localhost:3000/sse',
        // optional: configure headers        // headers: { Authorization: 'Bearer my-api-key' },
        // optional: provide an OAuth client provider for automatic authorization        // authProvider: myOAuthClientProvider,      },    });
    // Alternatively, you can create transports with the official SDKs instead of direct config:    // const httpTransport = new StreamableHTTPClientTransport(new URL('http://localhost:3000/mcp'));    // const httpClient = await experimental_createMCPClient({ transport: httpTransport });    // const sseTransport = new SSEClientTransport(new URL('http://localhost:3000/sse'));    // const sseClient = await experimental_createMCPClient({ transport: sseTransport });
    const toolSetOne = await stdioClient.tools();    const toolSetTwo = await httpClient.tools();    const toolSetThree = await sseClient.tools();    const tools = {      ...toolSetOne,      ...toolSetTwo,      ...toolSetThree, // note: this approach causes subsequent tool sets to override tools with the same name    };
    const response = await streamText({      model: openai('gpt-4o'),      tools,      prompt,      // When streaming, the client should be closed after the response is finished:      onFinish: async () => {        await stdioClient.close();        await httpClient.close();        await sseClient.close();      },      // Closing clients onError is optional      // - Closing: Immediately frees resources, prevents hanging connections      // - Not closing: Keeps connection open for retries      onError: async error => {        await stdioClient.close();        await httpClient.close();        await sseClient.close();      },    });
    return response.toDataStreamResponse();  } catch (error) {    return new Response('Internal Server Error', { status: 500 });  }}

Client


Let's create a simple React component that imports the useCompletion hook from the @ai-sdk/react module. The useCompletion hook will call the /api/completion endpoint when a button is clicked. The endpoint will generate text based on the input prompt and stream it to the client.

app/page.tsx

'use client';
import { useCompletion } from '@ai-sdk/react';
export default function Page() {  const { completion, complete } = useCompletion({    api: '/api/completion',  });
  return (    <div>      <div        onClick={async () => {          await complete(            'Please schedule a call with Sonny and Robby for tomorrow at 10am ET for me!',          );        }}      >        Schedule a call      </div>
      {completion}    </div>  );}

On this page

MCP Tools

Server

Client

Deploy and Scale AI Apps with Vercel.

Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.

Trusted by industry leaders:

  • OpenAI
  • Photoroom
  • leonardo-ai Logoleonardo-ai Logo
  • zapier Logozapier Logo

Talk to an expert