📄 ai-sdk/cookbook/next/render-visual-interface-in-chat

File: render-visual-interface-in-chat.md | Updated: 11/15/2025

Source: https://ai-sdk.dev/cookbook/next/render-visual-interface-in-chat

AI SDK

Menu

Guides

RAG Agent

Multi-Modal Agent

Slackbot Agent Guide

Natural Language Postgres

Get started with Computer Use

Get started with Gemini 2.5

Get started with Claude 4

OpenAI Responses API

Google Gemini Image Generation

Get started with Claude 3.7 Sonnet

Get started with Llama 3.1

Get started with GPT-5

Get started with OpenAI o1

Get started with OpenAI o3-mini

Get started with DeepSeek R1

Next.js

Generate Text

Generate Text with Chat Prompt

Generate Image with Chat Prompt

Stream Text

Stream Text with Chat Prompt

Stream Text with Image Prompt

Chat with PDFs

streamText Multi-Step Cookbook

Markdown Chatbot with Memoization

Generate Object

Generate Object with File Prompt through Form Submission

Stream Object

Call Tools

Call Tools in Multiple Steps

Model Context Protocol (MCP) Tools

Share useChat State Across Components

Human-in-the-Loop Agent with Next.js

Send Custom Body from useChat

Render Visual Interface in Chat

Caching Middleware

Node

Generate Text

Generate Text with Chat Prompt

Generate Text with Image Prompt

Stream Text

Stream Text with Chat Prompt

Stream Text with Image Prompt

Stream Text with File Prompt

Generate Object with a Reasoning Model

Generate Object

Stream Object

Stream Object with Image Prompt

Record Token Usage After Streaming Object

Record Final Object after Streaming Object

Call Tools

Call Tools with Image Prompt

Call Tools in Multiple Steps

Model Context Protocol (MCP) Tools

Manual Agent Loop

Web Search Agent

Embed Text

Embed Text in Batch

Intercepting Fetch Requests

Local Caching Middleware

Retrieval Augmented Generation

Knowledge Base Agent

API Servers

Node.js HTTP Server

Express

Hono

Fastify

Nest.js

React Server Components

Copy markdown

Render Visual Interface in Chat

====================================================================================================================================

An interesting consequence of language models that can call tools is that this ability can be used to render visual interfaces by streaming React components to the client.

http://localhost:3000

User: How is it going?

Assistant: All good, how may I help you?

What is the weather in San Francisco?

Send Message

Client


Let's build an assistant that gets the weather for any city by calling the getWeatherInformation tool. Instead of returning text during the tool call, you will render a React component that displays the weather information on the client.

app/page.tsx

'use client';
import { useChat } from '@ai-sdk/react';import {  DefaultChatTransport,  lastAssistantMessageIsCompleteWithToolCalls,} from 'ai';import { useState } from 'react';import { ChatMessage } from './api/chat/route';
export default function Chat() {  const [input, setInput] = useState('');  const { messages, sendMessage, addToolOutput } = useChat<ChatMessage>({    transport: new DefaultChatTransport({      api: '/api/chat',    }),
    sendAutomaticallyWhen: lastAssistantMessageIsCompleteWithToolCalls,
    // run client-side tools that are automatically executed:    async onToolCall({ toolCall }) {      if (toolCall.toolName === 'getLocation') {        const cities = ['New York', 'Los Angeles', 'Chicago', 'San Francisco'];
        // No await - avoids potential deadlocks        addToolOutput({          tool: 'getLocation',          toolCallId: toolCall.toolCallId,          output: cities[Math.floor(Math.random() * cities.length)],        });      }    },  });
  return (    <div className="flex flex-col w-full max-w-md py-24 mx-auto stretch gap-4">      {messages?.map(m => (        <div key={m.id} className="whitespace-pre-wrap flex flex-col gap-1">          <strong>{`${m.role}: `}</strong>          {m.parts?.map((part, i) => {            switch (part.type) {              case 'text':                return <div key={m.id + i}>{part.text}</div>;              // render confirmation tool (client-side tool with user interaction)              case 'tool-askForConfirmation':                return (                  <div                    key={part.toolCallId}                    className="text-gray-500 flex flex-col gap-2"                  >                    <div className="flex gap-2">                      {part.state === 'output-available' ? (                        <b>{part.output}</b>                      ) : (                        <>                          <button                            className="px-4 py-2 font-bold text-white bg-blue-500 rounded hover:bg-blue-700"                            onClick={() =>                              addToolOutput({                                tool: 'askForConfirmation',                                toolCallId: part.toolCallId,                                output: 'Yes, confirmed.',                              })                            }                          >                            Yes                          </button>                          <button                            className="px-4 py-2 font-bold text-white bg-red-500 rounded hover:bg-red-700"                            onClick={() =>                              addToolOutput({                                tool: 'askForConfirmation',                                toolCallId: part.toolCallId,                                output: 'No, denied',                              })                            }                          >                            No                          </button>                        </>                      )}                    </div>                  </div>                );
              // other tools:              case 'tool-getWeatherInformation':                if (part.state === 'output-available') {                  return (                    <div                      key={part.toolCallId}                      className="flex flex-col gap-2 p-4 bg-blue-400 rounded-lg"                    >                      <div className="flex flex-row justify-between items-center">                        <div className="text-4xl text-blue-50 font-medium">                          {part.output.value}°                          {part.output.unit === 'celsius' ? 'C' : 'F'}                        </div>
                        <div className="h-9 w-9 bg-amber-400 rounded-full flex-shrink-0" />                      </div>                      <div className="flex flex-row gap-2 text-blue-50 justify-between">                        {part.output.weeklyForecast.map(forecast => (                          <div                            key={forecast.day}                            className="flex flex-col items-center"                          >                            <div className="text-xs">{forecast.day}</div>                            <div>{forecast.value}°</div>                          </div>                        ))}                      </div>                    </div>                  );                }                break;              case 'tool-getLocation':                if (part.state === 'output-available') {                  return (                    <div                      key={part.toolCallId}                      className="text-gray-500 bg-gray-100 rounded-lg p-4"                    >                      User is in {part.output}.                    </div>                  );                } else {                  return (                    <div key={part.toolCallId} className="text-gray-500">                      Calling getLocation...                    </div>                  );                }
              default:                break;            }          })}        </div>      ))}
      <form        onSubmit={e => {          e.preventDefault();          sendMessage({ text: input });          setInput('');        }}      >        <input          className="fixed bottom-0 w-full max-w-md p-2 mb-8 border border-gray-300 rounded shadow-xl"          value={input}          placeholder="Say something..."          onChange={e => setInput(e.currentTarget.value)}        />      </form>    </div>  );}

Server


api/chat.ts

import { openai } from '@ai-sdk/openai';import {  type InferUITools,  type ToolSet,  type UIDataTypes,  type UIMessage,  convertToModelMessages,  stepCountIs,  streamText,  tool,} from 'ai';import { z } from 'zod';
const tools = {  getWeatherInformation: tool({    description: 'show the weather in a given city to the user',    inputSchema: z.object({ city: z.string() }),    execute: async ({}: { city: string }) => {      return {        value: 24,        unit: 'celsius',        weeklyForecast: [          { day: 'Monday', value: 24 },          { day: 'Tuesday', value: 25 },          { day: 'Wednesday', value: 26 },          { day: 'Thursday', value: 27 },          { day: 'Friday', value: 28 },          { day: 'Saturday', value: 29 },          { day: 'Sunday', value: 30 },        ],      };    },  }),  // client-side tool that starts user interaction:  askForConfirmation: tool({    description: 'Ask the user for confirmation.',    inputSchema: z.object({      message: z.string().describe('The message to ask for confirmation.'),    }),  }),  // client-side tool that is automatically executed on the client:  getLocation: tool({    description:      'Get the user location. Always ask for confirmation before using this tool.',    inputSchema: z.object({}),  }),} satisfies ToolSet;
export type ChatTools = InferUITools<typeof tools>;
export type ChatMessage = UIMessage<never, UIDataTypes, ChatTools>;
export async function POST(request: Request) {  const { messages }: { messages: ChatMessage[] } = await request.json();
  const result = streamText({    model: openai('gpt-4.1'),    messages: convertToModelMessages(messages),    tools,    stopWhen: stepCountIs(5),  });
  return result.toUIMessageStreamResponse();}

On this page

Render Visual Interface in Chat

Client

Server

Deploy and Scale AI Apps with Vercel.

Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.

Trusted by industry leaders:

  • OpenAI
  • Photoroom
  • leonardo-ai Logoleonardo-ai Logo
  • zapier Logozapier Logo

Talk to an expert