File: stream-text-with-chat-prompt.md | Updated: 11/15/2025
Menu
Google Gemini Image Generation
Get started with Claude 3.7 Sonnet
Get started with OpenAI o3-mini
Generate Text with Chat Prompt
Generate Image with Chat Prompt
streamText Multi-Step Cookbook
Markdown Chatbot with Memoization
Generate Object with File Prompt through Form Submission
Model Context Protocol (MCP) Tools
Share useChat State Across Components
Human-in-the-Loop Agent with Next.js
Render Visual Interface in Chat
Generate Text with Chat Prompt
Generate Text with Image Prompt
Generate Object with a Reasoning Model
Stream Object with Image Prompt
Record Token Usage After Streaming Object
Record Final Object after Streaming Object
Model Context Protocol (MCP) Tools
Retrieval Augmented Generation
Copy markdown
===========================================================================================================================
Chat completion can sometimes take a long time to finish, especially when the response is big. In such cases, it is useful to stream the chat completion to the client in real-time. This allows the client to display the new message as it is being generated by the model, rather than have users wait for it to finish.
http://localhost:3000
User: How is it going?
Assistant: All good, how may I help you?
Why is the sky blue?
Send Message
Let's create a React component that imports the useChat hook from the @ai-sdk/react module. The useChat hook will call the /api/chat endpoint when the user sends a message. The endpoint will generate the assistant's response based on the conversation history and stream it to the client.
app/page.tsx
'use client';
import { useChat } from '@ai-sdk/react';import { DefaultChatTransport } from 'ai';import { useState } from 'react';
export default function Page() { const [input, setInput] = useState('');
const { messages, sendMessage } = useChat({ transport: new DefaultChatTransport({ api: '/api/chat', }), });
return ( <div> <input value={input} onChange={event => { setInput(event.target.value); }} onKeyDown={async event => { if (event.key === 'Enter') { sendMessage({ parts: [{ type: 'text', text: input }], }); } }} />
{messages.map((message, index) => ( <div key={index}> {message.parts.map(part => { if (part.type === 'text') { return <div key={`${message.id}-text`}>{part.text}</div>; } })} </div> ))} </div> );}
Next, let's create the /api/chat endpoint that generates the assistant's response based on the conversation history.
app/api/chat/route.ts
import { openai } from '@ai-sdk/openai';import { convertToModelMessages, streamText, type UIMessage } from 'ai';
export async function POST(req: Request) { const { messages }: { messages: UIMessage[] } = await req.json();
const result = streamText({ model: openai('gpt-4o'), system: 'You are a helpful assistant.', messages: convertToModelMessages(messages), });
return result.toUIMessageStreamResponse();}
On this page
Deploy and Scale AI Apps with Vercel.
Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.
Trusted by industry leaders: