File: stream-text-with-image-prompt.md | Updated: 11/15/2025
Menu
Google Gemini Image Generation
Get started with Claude 3.7 Sonnet
Get started with OpenAI o3-mini
Generate Text with Chat Prompt
Generate Image with Chat Prompt
streamText Multi-Step Cookbook
Markdown Chatbot with Memoization
Generate Object with File Prompt through Form Submission
Model Context Protocol (MCP) Tools
Share useChat State Across Components
Human-in-the-Loop Agent with Next.js
Render Visual Interface in Chat
Generate Text with Chat Prompt
Generate Text with Image Prompt
Generate Object with a Reasoning Model
Stream Object with Image Prompt
Record Token Usage After Streaming Object
Record Final Object after Streaming Object
Model Context Protocol (MCP) Tools
Retrieval Augmented Generation
Copy markdown
==============================================================================================================================
Vision models such as GPT-4o can process both text and images. In this example, we will show you how to send an image URL along with the user's message to the model with useChat.
The server route uses convertToModelMessages to handle the conversion from UIMessages to model messages, which automatically handles multimodal content including images.
app/api/chat/route.ts
import { openai } from '@ai-sdk/openai';import { streamText } from 'ai';
export const maxDuration = 60;
export async function POST(req: Request) { const { messages } = await req.json();
// Call the language model const result = streamText({ model: openai('gpt-4.1'), messages: convertToModelMessages(messages), });
// Respond with the stream return result.toUIMessageStreamResponse();}
On the client side, we use the new useChat hook and send multimodal messages using the parts array.
app/page.tsx
'use client';
import { useChat } from '@ai-sdk/react';import { DefaultChatTransport } from 'ai';import { useState } from 'react';
// Allow streaming responses up to 30 secondsexport const maxDuration = 30;
export default function Chat() { const [input, setInput] = useState(''); const [imageUrl, setImageUrl] = useState( 'https://science.nasa.gov/wp-content/uploads/2023/09/web-first-images-release.png', );
const { messages, sendMessage } = useChat();
const handleSubmit = async (event: React.FormEvent<HTMLFormElement>) => { event.preventDefault(); sendMessage({ role: 'user', parts: [ // check if imageUrl is defined, if so, add it to the message ...(imageUrl.trim().length > 0 ? [ { type: 'file' as const, mediaType: 'image/png', url: imageUrl, }, ] : []), { type: 'text' as const, text: input }, ], }); setInput(''); setImageUrl(''); };
return ( <div> <div> {messages.map(m => ( <div key={m.id}> <span>{m.role === 'user' ? 'User: ' : 'AI: '}</span> <div> {m.parts.map((part, i) => { switch (part.type) { case 'text': return part.text; case 'file': return ( <img key={(part.filename || 'image') + i} src={part.url} alt={part.filename ?? 'image'} /> ); default: return null; } })} </div> </div> ))} </div> <form onSubmit={handleSubmit}> <div> <label htmlFor="image-url">Image URL:</label> <input id="image-url" value={imageUrl} placeholder="Enter image URL..." onChange={e => setImageUrl(e.currentTarget.value)} /> </div> <div> <label htmlFor="image-description">Prompt:</label> <input id="image-description" value={input} placeholder="What does the image show..." onChange={e => setInput(e.currentTarget.value)} /> </div> <button type="submit">Send Message</button> </form> </div> );}
On this page
Deploy and Scale AI Apps with Vercel.
Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.
Trusted by industry leaders: