📄 ai-sdk/cookbook/node/call-tools

File: call-tools.md | Updated: 11/15/2025

Source: https://ai-sdk.dev/cookbook/node/call-tools

AI SDK

Menu

Guides

RAG Agent

Multi-Modal Agent

Slackbot Agent Guide

Natural Language Postgres

Get started with Computer Use

Get started with Gemini 2.5

Get started with Claude 4

OpenAI Responses API

Google Gemini Image Generation

Get started with Claude 3.7 Sonnet

Get started with Llama 3.1

Get started with GPT-5

Get started with OpenAI o1

Get started with OpenAI o3-mini

Get started with DeepSeek R1

Next.js

Generate Text

Generate Text with Chat Prompt

Generate Image with Chat Prompt

Stream Text

Stream Text with Chat Prompt

Stream Text with Image Prompt

Chat with PDFs

streamText Multi-Step Cookbook

Markdown Chatbot with Memoization

Generate Object

Generate Object with File Prompt through Form Submission

Stream Object

Call Tools

Call Tools in Multiple Steps

Model Context Protocol (MCP) Tools

Share useChat State Across Components

Human-in-the-Loop Agent with Next.js

Send Custom Body from useChat

Render Visual Interface in Chat

Caching Middleware

Node

Generate Text

Generate Text with Chat Prompt

Generate Text with Image Prompt

Stream Text

Stream Text with Chat Prompt

Stream Text with Image Prompt

Stream Text with File Prompt

Generate Object with a Reasoning Model

Generate Object

Stream Object

Stream Object with Image Prompt

Record Token Usage After Streaming Object

Record Final Object after Streaming Object

Call Tools

Call Tools with Image Prompt

Call Tools in Multiple Steps

Model Context Protocol (MCP) Tools

Manual Agent Loop

Web Search Agent

Embed Text

Embed Text in Batch

Intercepting Fetch Requests

Local Caching Middleware

Retrieval Augmented Generation

Knowledge Base Agent

API Servers

Node.js HTTP Server

Express

Hono

Fastify

Nest.js

React Server Components

Copy markdown

Call Tools

=====================================================================

Some models allow developers to provide a list of tools that can be called at any time during a generation. This is useful for extending the capabilities of a language model to either use logic or data to interact with systems external to the model.

import { generateText, tool } from 'ai';import { openai } from '@ai-sdk/openai';import { z } from 'zod';
const result = await generateText({  model: openai('gpt-4.1'),  tools: {    weather: tool({      description: 'Get the weather in a location',      inputSchema: z.object({        location: z.string().describe('The location to get the weather for'),      }),      execute: async ({ location }) => ({        location,        temperature: 72 + Math.floor(Math.random() * 21) - 10,      }),    }),    cityAttractions: tool({      inputSchema: z.object({ city: z.string() }),    }),  },  prompt:    'What is the weather in San Francisco and what attractions should I visit?',});

Accessing Tool Calls and Tool Results


If the model decides to call a tool, it will generate a tool call. You can access the tool call by checking the toolCalls property on the result.

import { openai } from '@ai-sdk/openai';import { generateText, tool } from 'ai';import dotenv from 'dotenv';import { z } from 'zod';
dotenv.config();
async function main() {  const result = await generateText({    model: openai('gpt-4o'),    maxOutputTokens: 512,    tools: {      weather: tool({        description: 'Get the weather in a location',        inputSchema: z.object({          location: z.string().describe('The location to get the weather for'),        }),        execute: async ({ location }) => ({          location,          temperature: 72 + Math.floor(Math.random() * 21) - 10,        }),      }),      cityAttractions: tool({        inputSchema: z.object({ city: z.string() }),      }),    },    prompt:      'What is the weather in San Francisco and what attractions should I visit?',  });
  // typed tool calls:  for (const toolCall of result.toolCalls) {    if (toolCall.dynamic) {      continue;    }
    switch (toolCall.toolName) {      case 'cityAttractions': {        toolCall.input.city; // string        break;      }
      case 'weather': {        toolCall.input.location; // string        break;      }    }  }
  console.log(JSON.stringify(result, null, 2));}
main().catch(console.error);

Accessing Tool Results


You can access the result of a tool call by checking the toolResults property on the result.

import { openai } from '@ai-sdk/openai';import { generateText, tool } from 'ai';import dotenv from 'dotenv';import { z } from 'zod';
dotenv.config();
async function main() {  const result = await generateText({    model: openai('gpt-4o'),    maxOutputTokens: 512,    tools: {      weather: tool({        description: 'Get the weather in a location',        inputSchema: z.object({          location: z.string().describe('The location to get the weather for'),        }),        execute: async ({ location }) => ({          location,          temperature: 72 + Math.floor(Math.random() * 21) - 10,        }),      }),      cityAttractions: tool({        inputSchema: z.object({ city: z.string() }),      }),    },    prompt:      'What is the weather in San Francisco and what attractions should I visit?',  });
  // typed tool results for tools with execute method:  for (const toolResult of result.toolResults) {    if (toolResult.dynamic) {      continue;    }
    switch (toolResult.toolName) {      case 'weather': {        toolResult.input.location; // string        toolResult.output.location; // string        toolResult.output.temperature; // number        break;      }    }  }
  console.log(JSON.stringify(result, null, 2));}
main().catch(console.error);

toolResults will only be available if the tool has an execute function.

Model Response


When using tools, it's important to note that the model won't respond with the tool call results by default. This is because the model has technically already generated its response to the prompt: the tool call. Many use cases will require the model to summarise the results of the tool call within the context of the original prompt automatically. You can achieve this by using stopWhen which will automatically send toolResults to the model to trigger another generation.

On this page

Call Tools

Accessing Tool Calls and Tool Results

Accessing Tool Results

Model Response

Deploy and Scale AI Apps with Vercel.

Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.

Trusted by industry leaders:

  • OpenAI
  • Photoroom
  • leonardo-ai Logoleonardo-ai Logo
  • zapier Logozapier Logo

Talk to an expert