📄 ai-sdk/cookbook/rsc/call-tools-in-parallel

File: call-tools-in-parallel.md | Updated: 11/15/2025

Source: https://ai-sdk.dev/cookbook/rsc/call-tools-in-parallel

AI SDK

Menu

Guides

RAG Agent

Multi-Modal Agent

Slackbot Agent Guide

Natural Language Postgres

Get started with Computer Use

Get started with Gemini 2.5

Get started with Claude 4

OpenAI Responses API

Google Gemini Image Generation

Get started with Claude 3.7 Sonnet

Get started with Llama 3.1

Get started with GPT-5

Get started with OpenAI o1

Get started with OpenAI o3-mini

Get started with DeepSeek R1

Next.js

Generate Text

Generate Text with Chat Prompt

Generate Image with Chat Prompt

Stream Text

Stream Text with Chat Prompt

Stream Text with Image Prompt

Chat with PDFs

streamText Multi-Step Cookbook

Markdown Chatbot with Memoization

Generate Object

Generate Object with File Prompt through Form Submission

Stream Object

Call Tools

Call Tools in Multiple Steps

Model Context Protocol (MCP) Tools

Share useChat State Across Components

Human-in-the-Loop Agent with Next.js

Send Custom Body from useChat

Render Visual Interface in Chat

Caching Middleware

Node

Generate Text

Generate Text with Chat Prompt

Generate Text with Image Prompt

Stream Text

Stream Text with Chat Prompt

Stream Text with Image Prompt

Stream Text with File Prompt

Generate Object with a Reasoning Model

Generate Object

Stream Object

Stream Object with Image Prompt

Record Token Usage After Streaming Object

Record Final Object after Streaming Object

Call Tools

Call Tools with Image Prompt

Call Tools in Multiple Steps

Model Context Protocol (MCP) Tools

Manual Agent Loop

Web Search Agent

Embed Text

Embed Text in Batch

Intercepting Fetch Requests

Local Caching Middleware

Retrieval Augmented Generation

Knowledge Base Agent

API Servers

Node.js HTTP Server

Express

Hono

Fastify

Nest.js

React Server Components

Generate Text

Generate Text with Chat Prompt

Stream Text

Stream Text with Chat Prompt

Generate Object

Stream Object

Call Tools

Call Tools in Parallel

Save Messages To Database

Restore Messages From Database

Render Visual Interface in Chat

Stream Updates to Visual Interfaces

Record Token Usage after Streaming User Interfaces

Copy markdown

Call Tools in Parallel

========================================================================================================

Some language models support calling tools in parallel. This is particularly useful when multiple tools are independent of each other and can be executed in parallel during the same generation step.

http://localhost:3000

User: How is it going?

Assistant: All good, how may I help you?

What is the weather in Paris and New York?

Send Message

Client


Let's modify our previous example to call getWeather tool for multiple cities in parallel.

app/page.tsx

'use client';
import { useState } from 'react';import { Message, continueConversation } from './actions';
// Allow streaming responses up to 30 secondsexport const maxDuration = 30;
export default function Home() {  const [conversation, setConversation] = useState<Message[]>([]);  const [input, setInput] = useState<string>('');
  return (    <div>      <div>        {conversation.map((message, index) => (          <div key={index}>            {message.role}: {message.content}          </div>        ))}      </div>
      <div>        <input          type="text"          value={input}          onChange={event => {            setInput(event.target.value);          }}        />        <button          onClick={async () => {            const { messages } = await continueConversation([              ...conversation,              { role: 'user', content: input },            ]);
            setConversation(messages);          }}        >          Send Message        </button>      </div>    </div>  );}

Server


Let's update the tools object to now use the getWeather function instead.

app/actions.ts

'use server';
import { generateText } from 'ai';import { openai } from '@ai-sdk/openai';import { z } from 'zod';
export interface Message {  role: 'user' | 'assistant';  content: string;}
function getWeather({ city, unit }) {  // This function would normally make an  // API request to get the weather.
  return { value: 25, description: 'Sunny' };}
export async function continueConversation(history: Message[]) {  'use server';
  const { text, toolResults } = await generateText({    model: openai('gpt-3.5-turbo'),    system: 'You are a friendly weather assistant!',    messages: history,    tools: {      getWeather: {        description: 'Get the weather for a location',        inputSchema: z.object({          city: z.string().describe('The city to get the weather for'),          unit: z            .enum(['C', 'F'])            .describe('The unit to display the temperature in'),        }),        execute: async ({ city, unit }) => {          const weather = getWeather({ city, unit });          return `It is currently ${weather.value}°${unit} and ${weather.description} in ${city}!`;        },      },    },  });
  return {    messages: [      ...history,      {        role: 'assistant' as const,        content:          text || toolResults.map(toolResult => toolResult.result).join('\n'),      },    ],  };}

On this page

Call Tools in Parallel

Client

Server

Deploy and Scale AI Apps with Vercel.

Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.

Trusted by industry leaders:

  • OpenAI
  • Photoroom
  • leonardo-ai Logoleonardo-ai Logo
  • zapier Logozapier Logo

Talk to an expert