File: call-tools-in-parallel.md | Updated: 11/15/2025
Menu
Google Gemini Image Generation
Get started with Claude 3.7 Sonnet
Get started with OpenAI o3-mini
Generate Text with Chat Prompt
Generate Image with Chat Prompt
streamText Multi-Step Cookbook
Markdown Chatbot with Memoization
Generate Object with File Prompt through Form Submission
Model Context Protocol (MCP) Tools
Share useChat State Across Components
Human-in-the-Loop Agent with Next.js
Render Visual Interface in Chat
Generate Text with Chat Prompt
Generate Text with Image Prompt
Generate Object with a Reasoning Model
Stream Object with Image Prompt
Record Token Usage After Streaming Object
Record Final Object after Streaming Object
Model Context Protocol (MCP) Tools
Retrieval Augmented Generation
Generate Text with Chat Prompt
Restore Messages From Database
Render Visual Interface in Chat
Stream Updates to Visual Interfaces
Record Token Usage after Streaming User Interfaces
Copy markdown
========================================================================================================
Some language models support calling tools in parallel. This is particularly useful when multiple tools are independent of each other and can be executed in parallel during the same generation step.
http://localhost:3000
User: How is it going?
Assistant: All good, how may I help you?
What is the weather in Paris and New York?
Send Message
Let's modify our previous example to call getWeather tool for multiple cities in parallel.
app/page.tsx
'use client';
import { useState } from 'react';import { Message, continueConversation } from './actions';
// Allow streaming responses up to 30 secondsexport const maxDuration = 30;
export default function Home() { const [conversation, setConversation] = useState<Message[]>([]); const [input, setInput] = useState<string>('');
return ( <div> <div> {conversation.map((message, index) => ( <div key={index}> {message.role}: {message.content} </div> ))} </div>
<div> <input type="text" value={input} onChange={event => { setInput(event.target.value); }} /> <button onClick={async () => { const { messages } = await continueConversation([ ...conversation, { role: 'user', content: input }, ]);
setConversation(messages); }} > Send Message </button> </div> </div> );}
Let's update the tools object to now use the getWeather function instead.
app/actions.ts
'use server';
import { generateText } from 'ai';import { openai } from '@ai-sdk/openai';import { z } from 'zod';
export interface Message { role: 'user' | 'assistant'; content: string;}
function getWeather({ city, unit }) { // This function would normally make an // API request to get the weather.
return { value: 25, description: 'Sunny' };}
export async function continueConversation(history: Message[]) { 'use server';
const { text, toolResults } = await generateText({ model: openai('gpt-3.5-turbo'), system: 'You are a friendly weather assistant!', messages: history, tools: { getWeather: { description: 'Get the weather for a location', inputSchema: z.object({ city: z.string().describe('The city to get the weather for'), unit: z .enum(['C', 'F']) .describe('The unit to display the temperature in'), }), execute: async ({ city, unit }) => { const weather = getWeather({ city, unit }); return `It is currently ${weather.value}°${unit} and ${weather.description} in ${city}!`; }, }, }, });
return { messages: [ ...history, { role: 'assistant' as const, content: text || toolResults.map(toolResult => toolResult.result).join('\n'), }, ], };}
On this page
Deploy and Scale AI Apps with Vercel.
Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.
Trusted by industry leaders: