File: generate-object.md | Updated: 11/15/2025
Menu
Google Gemini Image Generation
Get started with Claude 3.7 Sonnet
Get started with OpenAI o3-mini
Generate Text with Chat Prompt
Generate Image with Chat Prompt
streamText Multi-Step Cookbook
Markdown Chatbot with Memoization
Generate Object with File Prompt through Form Submission
Model Context Protocol (MCP) Tools
Share useChat State Across Components
Human-in-the-Loop Agent with Next.js
Render Visual Interface in Chat
Generate Text with Chat Prompt
Generate Text with Image Prompt
Generate Object with a Reasoning Model
Stream Object with Image Prompt
Record Token Usage After Streaming Object
Record Final Object after Streaming Object
Model Context Protocol (MCP) Tools
Retrieval Augmented Generation
Generate Text with Chat Prompt
Restore Messages From Database
Render Visual Interface in Chat
Stream Updates to Visual Interfaces
Record Token Usage after Streaming User Interfaces
Copy markdown
===================================================================================
This example uses React Server Components (RSC). If you want to client side rendering and hooks instead, check out the "generate object" example with useState .
Earlier functions like generateText and streamText gave us the ability to generate unstructured text. However, if you want to generate structured data like JSON, you can provide a schema that describes the structure of your desired object to the generateObject function.
The function requires you to provide a schema using zod , a library for defining schemas for JavaScript objects. By using zod, you can also use it to validate the generated object and ensure that it conforms to the specified structure.
http://localhost:3000
View Notifications
Let's create a simple React component that will call the getNotifications function when a button is clicked. The function will generate a list of notifications as described in the schema.
app/page.tsx
'use client';
import { useState } from 'react';import { getNotifications } from './actions';
// Allow streaming responses up to 30 secondsexport const maxDuration = 30;
export default function Home() { const [generation, setGeneration] = useState<string>('');
return ( <div> <button onClick={async () => { const { notifications } = await getNotifications( 'Messages during finals week.', );
setGeneration(JSON.stringify(notifications, null, 2)); }} > View Notifications </button>
<pre>{generation}</pre> </div> );}
Now let's implement the getNotifications function. We'll use the generateObject function to generate the list of notifications based on the schema we defined earlier.
app/actions.ts
'use server';
import { generateObject } from 'ai';import { openai } from '@ai-sdk/openai';import { z } from 'zod';
export async function getNotifications(input: string) { 'use server';
const { object: notifications } = await generateObject({ model: openai('gpt-4.1'), system: 'You generate three notifications for a messages app.', prompt: input, schema: z.object({ notifications: z.array( z.object({ name: z.string().describe('Name of a fictional person.'), message: z.string().describe('Do not use emojis or links.'), minutesAgo: z.number(), }), ), }), });
return { notifications };}
On this page
Deploy and Scale AI Apps with Vercel.
Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.
Trusted by industry leaders: