📄 ai-sdk/cookbook/rsc/render-visual-interface-in-chat

File: render-visual-interface-in-chat.md | Updated: 11/15/2025

Source: https://ai-sdk.dev/cookbook/rsc/render-visual-interface-in-chat

AI SDK

Menu

Guides

RAG Agent

Multi-Modal Agent

Slackbot Agent Guide

Natural Language Postgres

Get started with Computer Use

Get started with Gemini 2.5

Get started with Claude 4

OpenAI Responses API

Google Gemini Image Generation

Get started with Claude 3.7 Sonnet

Get started with Llama 3.1

Get started with GPT-5

Get started with OpenAI o1

Get started with OpenAI o3-mini

Get started with DeepSeek R1

Next.js

Generate Text

Generate Text with Chat Prompt

Generate Image with Chat Prompt

Stream Text

Stream Text with Chat Prompt

Stream Text with Image Prompt

Chat with PDFs

streamText Multi-Step Cookbook

Markdown Chatbot with Memoization

Generate Object

Generate Object with File Prompt through Form Submission

Stream Object

Call Tools

Call Tools in Multiple Steps

Model Context Protocol (MCP) Tools

Share useChat State Across Components

Human-in-the-Loop Agent with Next.js

Send Custom Body from useChat

Render Visual Interface in Chat

Caching Middleware

Node

Generate Text

Generate Text with Chat Prompt

Generate Text with Image Prompt

Stream Text

Stream Text with Chat Prompt

Stream Text with Image Prompt

Stream Text with File Prompt

Generate Object with a Reasoning Model

Generate Object

Stream Object

Stream Object with Image Prompt

Record Token Usage After Streaming Object

Record Final Object after Streaming Object

Call Tools

Call Tools with Image Prompt

Call Tools in Multiple Steps

Model Context Protocol (MCP) Tools

Manual Agent Loop

Web Search Agent

Embed Text

Embed Text in Batch

Intercepting Fetch Requests

Local Caching Middleware

Retrieval Augmented Generation

Knowledge Base Agent

API Servers

Node.js HTTP Server

Express

Hono

Fastify

Nest.js

React Server Components

Generate Text

Generate Text with Chat Prompt

Stream Text

Stream Text with Chat Prompt

Generate Object

Stream Object

Call Tools

Call Tools in Parallel

Save Messages To Database

Restore Messages From Database

Render Visual Interface in Chat

Stream Updates to Visual Interfaces

Record Token Usage after Streaming User Interfaces

Copy markdown

Render Visual Interface in Chat

===================================================================================================================================

We've now seen how a language model can call a function and render a component based on a conversation with the user.

When we define multiple functions in tools , it is possible for the model to reason out the right functions to call based on whatever the user's intent is. This means that you can write a bunch of functions without the burden of implementing complex routing logic to run them.

Client


app/page.tsx

'use client';
import { useState } from 'react';import { ClientMessage } from './actions';import { useActions, useUIState } from '@ai-sdk/rsc';import { generateId } from 'ai';
// Allow streaming responses up to 30 secondsexport const maxDuration = 30;
export default function Home() {  const [input, setInput] = useState<string>('');  const [conversation, setConversation] = useUIState();  const { continueConversation } = useActions();
  return (    <div>      <div>        {conversation.map((message: ClientMessage) => (          <div key={message.id}>            {message.role}: {message.display}          </div>        ))}      </div>
      <div>        <input          type="text"          value={input}          onChange={event => {            setInput(event.target.value);          }}        />        <button          onClick={async () => {            setConversation((currentConversation: ClientMessage[]) => [              ...currentConversation,              { id: generateId(), role: 'user', display: input },            ]);
            const message = await continueConversation(input);
            setConversation((currentConversation: ClientMessage[]) => [              ...currentConversation,              message,            ]);          }}        >          Send Message        </button>      </div>    </div>  );}

components/stock.tsx

export async function Stock({ symbol, numOfMonths }) {  const data = await fetch(    `https://api.example.com/stock/${symbol}/${numOfMonths}`,  );
  return (    <div>      <div>{symbol}</div>
      <div>        {data.timeline.map(data => (          <div>            <div>{data.date}</div>            <div>{data.value}</div>          </div>        ))}      </div>    </div>  );}

components/flight.tsx

export async function Flight({ flightNumber }) {  const data = await fetch(`https://api.example.com/flight/${flightNumber}`);
  return (    <div>      <div>{flightNumber}</div>      <div>{data.status}</div>      <div>{data.source}</div>      <div>{data.destination}</div>    </div>  );}

Server


app/actions.tsx

'use server';
import { getMutableAIState, streamUI } from '@ai-sdk/rsc';import { openai } from '@ai-sdk/openai';import { ReactNode } from 'react';import { z } from 'zod';import { generateId } from 'ai';import { Stock } from '@/components/stock';import { Flight } from '@/components/flight';
export interface ServerMessage {  role: 'user' | 'assistant';  content: string;}
export interface ClientMessage {  id: string;  role: 'user' | 'assistant';  display: ReactNode;}
export async function continueConversation(  input: string,): Promise<ClientMessage> {  'use server';
  const history = getMutableAIState();
  const result = await streamUI({    model: openai('gpt-3.5-turbo'),    messages: [...history.get(), { role: 'user', content: input }],    text: ({ content, done }) => {      if (done) {        history.done((messages: ServerMessage[]) => [          ...messages,          { role: 'assistant', content },        ]);      }
      return <div>{content}</div>;    },    tools: {      showStockInformation: {        description:          'Get stock information for symbol for the last numOfMonths months',        inputSchema: z.object({          symbol: z            .string()            .describe('The stock symbol to get information for'),          numOfMonths: z            .number()            .describe('The number of months to get historical information for'),        }),        generate: async ({ symbol, numOfMonths }) => {          history.done((messages: ServerMessage[]) => [            ...messages,            {              role: 'assistant',              content: `Showing stock information for ${symbol}`,            },          ]);
          return <Stock symbol={symbol} numOfMonths={numOfMonths} />;        },      },      showFlightStatus: {        description: 'Get the status of a flight',        inputSchema: z.object({          flightNumber: z            .string()            .describe('The flight number to get status for'),        }),        generate: async ({ flightNumber }) => {          history.done((messages: ServerMessage[]) => [            ...messages,            {              role: 'assistant',              content: `Showing flight status for ${flightNumber}`,            },          ]);
          return <Flight flightNumber={flightNumber} />;        },      },    },  });
  return {    id: generateId(),    role: 'assistant',    display: result.value,  };}

app/ai.ts

import { createAI } from '@ai-sdk/rsc';import { ServerMessage, ClientMessage, continueConversation } from './actions';
export const AI = createAI<ServerMessage[], ClientMessage[]>({  actions: {    continueConversation,  },  initialAIState: [],  initialUIState: [],});

On this page

Render Visual Interface in Chat

Client

Server

Deploy and Scale AI Apps with Vercel.

Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.

Trusted by industry leaders:

  • OpenAI
  • Photoroom
  • leonardo-ai Logoleonardo-ai Logo
  • zapier Logozapier Logo

Talk to an expert