File: save-messages-to-database.md | Updated: 11/15/2025
Menu
Google Gemini Image Generation
Get started with Claude 3.7 Sonnet
Get started with OpenAI o3-mini
Generate Text with Chat Prompt
Generate Image with Chat Prompt
streamText Multi-Step Cookbook
Markdown Chatbot with Memoization
Generate Object with File Prompt through Form Submission
Model Context Protocol (MCP) Tools
Share useChat State Across Components
Human-in-the-Loop Agent with Next.js
Render Visual Interface in Chat
Generate Text with Chat Prompt
Generate Text with Image Prompt
Generate Object with a Reasoning Model
Stream Object with Image Prompt
Record Token Usage After Streaming Object
Record Final Object after Streaming Object
Model Context Protocol (MCP) Tools
Retrieval Augmented Generation
Generate Text with Chat Prompt
Restore Messages From Database
Render Visual Interface in Chat
Stream Updates to Visual Interfaces
Record Token Usage after Streaming User Interfaces
Copy markdown
=================================================================================================================
Sometimes conversations with language models can get interesting and you might want to save the state of so you can revisit it or continue the conversation later.
createAI has an experimental callback function called onSetAIState that gets called whenever the AI state changes. You can use this to save the AI state to a file or a database.
app/layout.tsx
import { ServerMessage } from './actions';import { AI } from './ai';
export default function RootLayout({ children,}: Readonly<{ children: React.ReactNode;}>) { // get chat history from database const history: ServerMessage[] = getChat();
return ( <html lang="en"> <body> <AI initialAIState={history} initialUIState={[]}> {children} </AI> </body> </html> );}
app/page.tsx
'use client';
import { useState } from 'react';import { ClientMessage } from './actions';import { useActions, useUIState } from '@ai-sdk/rsc';import { generateId } from 'ai';
// Allow streaming responses up to 30 secondsexport const maxDuration = 30;
export default function Home() { const [input, setInput] = useState<string>(''); const [conversation, setConversation] = useUIState(); const { continueConversation } = useActions();
return ( <div> <div> {conversation.map((message: ClientMessage) => ( <div key={message.id}> {message.role}: {message.display} </div> ))} </div>
<div> <input type="text" value={input} onChange={event => { setInput(event.target.value); }} /> <button onClick={async () => { setConversation((currentConversation: ClientMessage[]) => [ ...currentConversation, { id: generateId(), role: 'user', display: input }, ]);
const message = await continueConversation(input);
setConversation((currentConversation: ClientMessage[]) => [ ...currentConversation, message, ]); }} > Send Message </button> </div> </div> );}
We will use the callback function to listen to state changes and save the conversation once we receive a done event.
app/actions.tsx
'use server';
import { getAIState, getMutableAIState, streamUI } from '@ai-sdk/rsc';import { openai } from '@ai-sdk/openai';import { ReactNode } from 'react';import { z } from 'zod';import { generateId } from 'ai';import { Stock } from '@ai-studio/components/stock';
export interface ServerMessage { role: 'user' | 'assistant' | 'function'; content: string;}
export interface ClientMessage { id: string; role: 'user' | 'assistant' | 'function'; display: ReactNode;}
export async function continueConversation( input: string,): Promise<ClientMessage> { 'use server';
const history = getMutableAIState();
const result = await streamUI({ model: openai('gpt-3.5-turbo'), messages: [...history.get(), { role: 'user', content: input }], text: ({ content, done }) => { if (done) { history.done([ ...history.get(), { role: 'user', content: input }, { role: 'assistant', content }, ]); }
return <div>{content}</div>; }, tools: { showStockInformation: { description: 'Get stock information for symbol for the last numOfMonths months', inputSchema: z.object({ symbol: z .string() .describe('The stock symbol to get information for'), numOfMonths: z .number() .describe('The number of months to get historical information for'), }), generate: async ({ symbol, numOfMonths }) => { history.done([ ...history.get(), { role: 'function', name: 'showStockInformation', content: JSON.stringify({ symbol, numOfMonths }), }, ]);
return <Stock symbol={symbol} numOfMonths={numOfMonths} />; }, }, }, });
return { id: generateId(), role: 'assistant', display: result.value, };}
app/ai.ts
import { createAI } from '@ai-sdk/rsc';import { ServerMessage, ClientMessage, continueConversation } from './actions';
export const AI = createAI<ServerMessage[], ClientMessage[]>({ actions: { continueConversation, }, onSetAIState: async ({ state, done }) => { 'use server';
if (done) { saveChat(state); } }, onGetUIState: async () => { 'use server';
const history: ServerMessage[] = getAIState();
return history.map(({ role, content }) => ({ id: generateId(), role, display: role === 'function' ? <Stock {...JSON.parse(content)} /> : content, })); },});
On this page
Deploy and Scale AI Apps with Vercel.
Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.
Trusted by industry leaders: