File: stream-object.md | Updated: 11/15/2025
Menu
Google Gemini Image Generation
Get started with Claude 3.7 Sonnet
Get started with OpenAI o3-mini
Generate Text with Chat Prompt
Generate Image with Chat Prompt
streamText Multi-Step Cookbook
Markdown Chatbot with Memoization
Generate Object with File Prompt through Form Submission
Model Context Protocol (MCP) Tools
Share useChat State Across Components
Human-in-the-Loop Agent with Next.js
Render Visual Interface in Chat
Generate Text with Chat Prompt
Generate Text with Image Prompt
Generate Object with a Reasoning Model
Stream Object with Image Prompt
Record Token Usage After Streaming Object
Record Final Object after Streaming Object
Model Context Protocol (MCP) Tools
Retrieval Augmented Generation
Generate Text with Chat Prompt
Restore Messages From Database
Render Visual Interface in Chat
Stream Updates to Visual Interfaces
Record Token Usage after Streaming User Interfaces
Copy markdown
=============================================================================
This example uses React Server Components (RSC). If you want to client side rendering and hooks instead, check out the "streaming object generation" example with useObject .
Object generation can sometimes take a long time to complete, especially when you're generating a large schema. In such cases, it is useful to stream the object generation process to the client in real-time. This allows the client to display the generated object as it is being generated, rather than have users wait for it to complete before displaying the result.
http://localhost:3000
View Notifications
Let's create a simple React component that will call the getNotifications function when a button is clicked. The function will generate a list of notifications as described in the schema.
app/page.tsx
'use client';
import { useState } from 'react';import { generate } from './actions';import { readStreamableValue } from '@ai-sdk/rsc';
// Allow streaming responses up to 30 secondsexport const maxDuration = 30;
export default function Home() { const [generation, setGeneration] = useState<string>('');
return ( <div> <button onClick={async () => { const { object } = await generate('Messages during finals week.');
for await (const partialObject of readStreamableValue(object)) { if (partialObject) { setGeneration( JSON.stringify(partialObject.notifications, null, 2), ); } } }} > Ask </button>
<pre>{generation}</pre> </div> );}
Now let's implement the getNotifications function. We'll use the generateObject function to generate the list of fictional notifications based on the schema we defined earlier.
app/actions.ts
'use server';
import { streamObject } from 'ai';import { openai } from '@ai-sdk/openai';import { createStreamableValue } from '@ai-sdk/rsc';import { z } from 'zod';
export async function generate(input: string) { 'use server';
const stream = createStreamableValue();
(async () => { const { partialObjectStream } = streamObject({ model: openai('gpt-4.1'), system: 'You generate three notifications for a messages app.', prompt: input, schema: z.object({ notifications: z.array( z.object({ name: z.string().describe('Name of a fictional person.'), message: z.string().describe('Do not use emojis or links.'), minutesAgo: z.number(), }), ), }), });
for await (const partialObject of partialObjectStream) { stream.update(partialObject); }
stream.done(); })();
return { object: stream.value };}
On this page
Deploy and Scale AI Apps with Vercel.
Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.
Trusted by industry leaders: