📄 ai-sdk/cookbook/rsc/stream-object

File: stream-object.md | Updated: 11/15/2025

Source: https://ai-sdk.dev/cookbook/rsc/stream-object

AI SDK

Menu

Guides

RAG Agent

Multi-Modal Agent

Slackbot Agent Guide

Natural Language Postgres

Get started with Computer Use

Get started with Gemini 2.5

Get started with Claude 4

OpenAI Responses API

Google Gemini Image Generation

Get started with Claude 3.7 Sonnet

Get started with Llama 3.1

Get started with GPT-5

Get started with OpenAI o1

Get started with OpenAI o3-mini

Get started with DeepSeek R1

Next.js

Generate Text

Generate Text with Chat Prompt

Generate Image with Chat Prompt

Stream Text

Stream Text with Chat Prompt

Stream Text with Image Prompt

Chat with PDFs

streamText Multi-Step Cookbook

Markdown Chatbot with Memoization

Generate Object

Generate Object with File Prompt through Form Submission

Stream Object

Call Tools

Call Tools in Multiple Steps

Model Context Protocol (MCP) Tools

Share useChat State Across Components

Human-in-the-Loop Agent with Next.js

Send Custom Body from useChat

Render Visual Interface in Chat

Caching Middleware

Node

Generate Text

Generate Text with Chat Prompt

Generate Text with Image Prompt

Stream Text

Stream Text with Chat Prompt

Stream Text with Image Prompt

Stream Text with File Prompt

Generate Object with a Reasoning Model

Generate Object

Stream Object

Stream Object with Image Prompt

Record Token Usage After Streaming Object

Record Final Object after Streaming Object

Call Tools

Call Tools with Image Prompt

Call Tools in Multiple Steps

Model Context Protocol (MCP) Tools

Manual Agent Loop

Web Search Agent

Embed Text

Embed Text in Batch

Intercepting Fetch Requests

Local Caching Middleware

Retrieval Augmented Generation

Knowledge Base Agent

API Servers

Node.js HTTP Server

Express

Hono

Fastify

Nest.js

React Server Components

Generate Text

Generate Text with Chat Prompt

Stream Text

Stream Text with Chat Prompt

Generate Object

Stream Object

Call Tools

Call Tools in Parallel

Save Messages To Database

Restore Messages From Database

Render Visual Interface in Chat

Stream Updates to Visual Interfaces

Record Token Usage after Streaming User Interfaces

Copy markdown

Stream Object

=============================================================================

This example uses React Server Components (RSC). If you want to client side rendering and hooks instead, check out the "streaming object generation" example with useObject .

Object generation can sometimes take a long time to complete, especially when you're generating a large schema. In such cases, it is useful to stream the object generation process to the client in real-time. This allows the client to display the generated object as it is being generated, rather than have users wait for it to complete before displaying the result.

http://localhost:3000

View Notifications

Client


Let's create a simple React component that will call the getNotifications function when a button is clicked. The function will generate a list of notifications as described in the schema.

app/page.tsx

'use client';
import { useState } from 'react';import { generate } from './actions';import { readStreamableValue } from '@ai-sdk/rsc';
// Allow streaming responses up to 30 secondsexport const maxDuration = 30;
export default function Home() {  const [generation, setGeneration] = useState<string>('');
  return (    <div>      <button        onClick={async () => {          const { object } = await generate('Messages during finals week.');
          for await (const partialObject of readStreamableValue(object)) {            if (partialObject) {              setGeneration(                JSON.stringify(partialObject.notifications, null, 2),              );            }          }        }}      >        Ask      </button>
      <pre>{generation}</pre>    </div>  );}

Server


Now let's implement the getNotifications function. We'll use the generateObject function to generate the list of fictional notifications based on the schema we defined earlier.

app/actions.ts

'use server';
import { streamObject } from 'ai';import { openai } from '@ai-sdk/openai';import { createStreamableValue } from '@ai-sdk/rsc';import { z } from 'zod';
export async function generate(input: string) {  'use server';
  const stream = createStreamableValue();
  (async () => {    const { partialObjectStream } = streamObject({      model: openai('gpt-4.1'),      system: 'You generate three notifications for a messages app.',      prompt: input,      schema: z.object({        notifications: z.array(          z.object({            name: z.string().describe('Name of a fictional person.'),            message: z.string().describe('Do not use emojis or links.'),            minutesAgo: z.number(),          }),        ),      }),    });
    for await (const partialObject of partialObjectStream) {      stream.update(partialObject);    }
    stream.done();  })();
  return { object: stream.value };}

On this page

Stream Object

Client

Server

Deploy and Scale AI Apps with Vercel.

Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.

Trusted by industry leaders:

  • OpenAI
  • Photoroom
  • leonardo-ai Logoleonardo-ai Logo
  • zapier Logozapier Logo

Talk to an expert