File: stream-text-with-chat-prompt.md | Updated: 11/15/2025
Menu
Google Gemini Image Generation
Get started with Claude 3.7 Sonnet
Get started with OpenAI o3-mini
Generate Text with Chat Prompt
Generate Image with Chat Prompt
streamText Multi-Step Cookbook
Markdown Chatbot with Memoization
Generate Object with File Prompt through Form Submission
Model Context Protocol (MCP) Tools
Share useChat State Across Components
Human-in-the-Loop Agent with Next.js
Render Visual Interface in Chat
Generate Text with Chat Prompt
Generate Text with Image Prompt
Generate Object with a Reasoning Model
Stream Object with Image Prompt
Record Token Usage After Streaming Object
Record Final Object after Streaming Object
Model Context Protocol (MCP) Tools
Retrieval Augmented Generation
Generate Text with Chat Prompt
Restore Messages From Database
Render Visual Interface in Chat
Stream Updates to Visual Interfaces
Record Token Usage after Streaming User Interfaces
Copy markdown
==========================================================================================================================
Chat completion can sometimes take a long time to finish, especially when the response is big. In such cases, it is useful to stream the chat completion to the client in real-time. This allows the client to display the new message as it is being generated by the model, rather than have users wait for it to finish.
http://localhost:3000
User: How is it going?
Assistant: All good, how may I help you?
Why is the sky blue?
Send Message
Let's create a simple conversation between a user and a model, and place a button that will call continueConversation.
app/page.tsx
'use client';
import { useState } from 'react';import { Message, continueConversation } from './actions';import { readStreamableValue } from '@ai-sdk/rsc';
// Allow streaming responses up to 30 secondsexport const maxDuration = 30;
export default function Home() { const [conversation, setConversation] = useState<Message[]>([]); const [input, setInput] = useState<string>('');
return ( <div> <div> {conversation.map((message, index) => ( <div key={index}> {message.role}: {message.content} </div> ))} </div>
<div> <input type="text" value={input} onChange={event => { setInput(event.target.value); }} /> <button onClick={async () => { const { messages, newMessage } = await continueConversation([ ...conversation, { role: 'user', content: input }, ]);
let textContent = '';
for await (const delta of readStreamableValue(newMessage)) { textContent = `${textContent}${delta}`;
setConversation([ ...messages, { role: 'assistant', content: textContent }, ]); } }} > Send Message </button> </div> </div> );}
Now, let's implement the continueConversation function that will insert the user's message into the conversation and stream back the new message.
app/actions.ts
'use server';
import { streamText } from 'ai';import { openai } from '@ai-sdk/openai';import { createStreamableValue } from '@ai-sdk/rsc';
export interface Message { role: 'user' | 'assistant'; content: string;}
export async function continueConversation(history: Message[]) { 'use server';
const stream = createStreamableValue();
(async () => { const { textStream } = streamText({ model: openai('gpt-3.5-turbo'), system: "You are a dude that doesn't drop character until the DVD commentary.", messages: history, });
for await (const text of textStream) { stream.update(text); }
stream.done(); })();
return { messages: history, newMessage: stream.value, };}
On this page
Deploy and Scale AI Apps with Vercel.
Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.
Trusted by industry leaders: