File: stream-ui-record-token-usage.md | Updated: 11/15/2025
Menu
Google Gemini Image Generation
Get started with Claude 3.7 Sonnet
Get started with OpenAI o3-mini
Generate Text with Chat Prompt
Generate Image with Chat Prompt
streamText Multi-Step Cookbook
Markdown Chatbot with Memoization
Generate Object with File Prompt through Form Submission
Model Context Protocol (MCP) Tools
Share useChat State Across Components
Human-in-the-Loop Agent with Next.js
Render Visual Interface in Chat
Generate Text with Chat Prompt
Generate Text with Image Prompt
Generate Object with a Reasoning Model
Stream Object with Image Prompt
Record Token Usage After Streaming Object
Record Final Object after Streaming Object
Model Context Protocol (MCP) Tools
Retrieval Augmented Generation
Generate Text with Chat Prompt
Restore Messages From Database
Render Visual Interface in Chat
Stream Updates to Visual Interfaces
Record Token Usage after Streaming User Interfaces
Copy markdown
Record Token Usage after Streaming User Interfaces
======================================================================================================================================================================
When you're streaming structured data with streamUI
, you may want to record the token usage for billing purposes.
You can use the onFinish callback to record token usage. It is called when the stream is finished.
app/page.tsx
'use client';
import { useState } from 'react';import { ClientMessage } from './actions';import { useActions, useUIState } from '@ai-sdk/rsc';import { generateId } from 'ai';
// Allow streaming responses up to 30 secondsexport const maxDuration = 30;
export default function Home() { const [input, setInput] = useState<string>(''); const [conversation, setConversation] = useUIState(); const { continueConversation } = useActions();
return ( <div> <div> {conversation.map((message: ClientMessage) => ( <div key={message.id}> {message.role}: {message.display} </div> ))} </div>
<div> <input type="text" value={input} onChange={event => { setInput(event.target.value); }} /> <button onClick={async () => { setConversation((currentConversation: ClientMessage[]) => [ ...currentConversation, { id: generateId(), role: 'user', display: input }, ]);
const message = await continueConversation(input);
setConversation((currentConversation: ClientMessage[]) => [ ...currentConversation, message, ]); }} > Send Message </button> </div> </div> );}
app/actions.tsx
'use server';
import { createAI, getMutableAIState, streamUI } from '@ai-sdk/rsc';import { openai } from '@ai-sdk/openai';import { ReactNode } from 'react';import { z } from 'zod';import { generateId } from 'ai';
export interface ServerMessage { role: 'user' | 'assistant'; content: string;}
export interface ClientMessage { id: string; role: 'user' | 'assistant'; display: ReactNode;}
export async function continueConversation( input: string,): Promise<ClientMessage> { 'use server';
const history = getMutableAIState();
const result = await streamUI({ model: openai('gpt-3.5-turbo'), messages: [...history.get(), { role: 'user', content: input }], text: ({ content, done }) => { if (done) { history.done((messages: ServerMessage[]) => [ ...messages, { role: 'assistant', content }, ]); }
return <div>{content}</div>; }, tools: { deploy: { description: 'Deploy repository to vercel', inputSchema: z.object({ repositoryName: z .string() .describe('The name of the repository, example: vercel/ai-chatbot'), }), generate: async function* ({ repositoryName }) { yield <div>Cloning repository {repositoryName}...</div>; // [!code highlight:5] await new Promise(resolve => setTimeout(resolve, 3000)); yield <div>Building repository {repositoryName}...</div>; await new Promise(resolve => setTimeout(resolve, 2000)); return <div>{repositoryName} deployed!</div>; }, }, }, onFinish: ({ usage }) => { const { promptTokens, completionTokens, totalTokens } = usage; // your own logic, e.g. for saving the chat history or recording usage console.log('Prompt tokens:', promptTokens); console.log('Completion tokens:', completionTokens); console.log('Total tokens:', totalTokens); }, });
return { id: generateId(), role: 'assistant', display: result.value, };}
app/ai.ts
import { createAI } from '@ai-sdk/rsc';import { ServerMessage, ClientMessage, continueConversation } from './actions';
export const AI = createAI<ServerMessage[], ClientMessage[]>({ actions: { continueConversation, }, initialAIState: [], initialUIState: [],});
On this page
Record Token Usage after Streaming User Interfaces
Deploy and Scale AI Apps with Vercel.
Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.
Trusted by industry leaders: