File: generative-user-interfaces.md | Updated: 11/15/2025
Menu
v5 (Latest)
AI SDK 5.x
Model Context Protocol (MCP) Tools
Copy markdown
======================================================================================================================
Generative user interfaces (generative UI) is the process of allowing a large language model (LLM) to go beyond text and "generate UI". This creates a more engaging and AI-native experience for users.
What is the weather in SF?
getWeather("San Francisco")
Thursday, March 7
47°
sunny
7am
48°
8am
50°
9am
52°
10am
54°
11am
56°
12pm
58°
1pm
60°
Thanks!
At the core of generative UI are tools , which are functions you provide to the model to perform specialized tasks like getting the weather in a location. The model can decide when and how to use these tools based on the context of the conversation.
Generative UI is the process of connecting the results of a tool call to a React component. Here's how it works:
By passing the tool results to React components, you can create a generative UI experience that's more engaging and adaptive to your needs.
Build a Generative UI Chat Interface
Let's create a chat interface that handles text-based conversations and incorporates dynamic UI elements based on model responses.
Start with a basic chat implementation using the useChat hook:
app/page.tsx
'use client';
import { useChat } from '@ai-sdk/react';import { useState } from 'react';
export default function Page() { const [input, setInput] = useState(''); const { messages, sendMessage } = useChat();
const handleSubmit = (e: React.FormEvent) => { e.preventDefault(); sendMessage({ text: input }); setInput(''); };
return ( <div> {messages.map(message => ( <div key={message.id}> <div>{message.role === 'user' ? 'User: ' : 'AI: '}</div> <div> {message.parts.map((part, index) => { if (part.type === 'text') { return <span key={index}>{part.text}</span>; } return null; })} </div> </div> ))}
<form onSubmit={handleSubmit}> <input value={input} onChange={e => setInput(e.target.value)} placeholder="Type a message..." /> <button type="submit">Send</button> </form> </div> );}
To handle the chat requests and model responses, set up an API route:
app/api/chat/route.ts
import { openai } from '@ai-sdk/openai';import { streamText, convertToModelMessages, UIMessage, stepCountIs } from 'ai';
export async function POST(request: Request) { const { messages }: { messages: UIMessage[] } = await request.json();
const result = streamText({ model: openai('gpt-4o'), system: 'You are a friendly assistant!', messages: convertToModelMessages(messages), stopWhen: stepCountIs(5), });
return result.toUIMessageStreamResponse();}
This API route uses the streamText function to process chat messages and stream the model's responses back to the client.
Before enhancing your chat interface with dynamic UI elements, you need to create a tool and corresponding React component. A tool will allow the model to perform a specific action, such as fetching weather information.
Create a new file called ai/tools.ts with the following content:
ai/tools.ts
import { tool as createTool } from 'ai';import { z } from 'zod';
export const weatherTool = createTool({ description: 'Display the weather for a location', inputSchema: z.object({ location: z.string().describe('The location to get the weather for'), }), execute: async function ({ location }) { await new Promise(resolve => setTimeout(resolve, 2000)); return { weather: 'Sunny', temperature: 75, location }; },});
export const tools = { displayWeather: weatherTool,};
In this file, you've created a tool called weatherTool. This tool simulates fetching weather information for a given location. This tool will return simulated data after a 2-second delay. In a real-world application, you would replace this simulation with an actual API call to a weather service.
Update the API route to include the tool you've defined:
app/api/chat/route.ts
import { openai } from '@ai-sdk/openai';import { streamText, convertToModelMessages, UIMessage, stepCountIs } from 'ai';import { tools } from '@/ai/tools';
export async function POST(request: Request) { const { messages }: { messages: UIMessage[] } = await request.json();
const result = streamText({ model: openai('gpt-4o'), system: 'You are a friendly assistant!', messages: convertToModelMessages(messages), stopWhen: stepCountIs(5), tools, });
return result.toUIMessageStreamResponse();}
Now that you've defined the tool and added it to your streamText call, let's build a React component to display the weather information it returns.
Create a new file called components/weather.tsx:
components/weather.tsx
type WeatherProps = { temperature: number; weather: string; location: string;};
export const Weather = ({ temperature, weather, location }: WeatherProps) => { return ( <div> <h2>Current Weather for {location}</h2> <p>Condition: {weather}</p> <p>Temperature: {temperature}°C</p> </div> );};
This component will display the weather information for a given location. It takes three props: temperature, weather, and location (exactly what the weatherTool returns).
Now that you have your tool and corresponding React component, let's integrate them into your chat interface. You'll render the Weather component when the model calls the weather tool.
To check if the model has called a tool, you can check the parts array of the UIMessage object for tool-specific parts. In AI SDK 5.0, tool parts use typed naming: tool-${toolName} instead of generic types.
Update your page.tsx file:
app/page.tsx
'use client';
import { useChat } from '@ai-sdk/react';import { useState } from 'react';import { Weather } from '@/components/weather';
export default function Page() { const [input, setInput] = useState(''); const { messages, sendMessage } = useChat();
const handleSubmit = (e: React.FormEvent) => { e.preventDefault(); sendMessage({ text: input }); setInput(''); };
return ( <div> {messages.map(message => ( <div key={message.id}> <div>{message.role === 'user' ? 'User: ' : 'AI: '}</div> <div> {message.parts.map((part, index) => { if (part.type === 'text') { return <span key={index}>{part.text}</span>; }
if (part.type === 'tool-displayWeather') { switch (part.state) { case 'input-available': return <div key={index}>Loading weather...</div>; case 'output-available': return ( <div key={index}> <Weather {...part.output} /> </div> ); case 'output-error': return <div key={index}>Error: {part.errorText}</div>; default: return null; } }
return null; })} </div> </div> ))}
<form onSubmit={handleSubmit}> <input value={input} onChange={e => setInput(e.target.value)} placeholder="Type a message..." /> <button type="submit">Send</button> </form> </div> );}
In this updated code snippet, you:
useState instead of the built-in input and handleInputChange.sendMessage instead of handleSubmit to send messages.parts array of each message for different content types.tool-displayWeather and their different states (input-available, output-available, output-error).This approach allows you to dynamically render UI components based on the model's responses, creating a more interactive and context-aware chat experience.
Expanding Your Generative UI Application
You can enhance your chat application by adding more tools and components, creating a richer and more versatile user experience. Here's how you can expand your application:
To add more tools, simply define them in your ai/tools.ts file:
// Add a new stock toolexport const stockTool = createTool({ description: 'Get price for a stock', inputSchema: z.object({ symbol: z.string().describe('The stock symbol to get the price for'), }), execute: async function ({ symbol }) { // Simulated API call await new Promise(resolve => setTimeout(resolve, 2000)); return { symbol, price: 100 }; },});
// Update the tools objectexport const tools = { displayWeather: weatherTool, getStockPrice: stockTool,};
Now, create a new file called components/stock.tsx:
type StockProps = { price: number; symbol: string;};
export const Stock = ({ price, symbol }: StockProps) => { return ( <div> <h2>Stock Information</h2> <p>Symbol: {symbol}</p> <p>Price: ${price}</p> </div> );};
Finally, update your page.tsx file to include the new Stock component:
'use client';
import { useChat } from '@ai-sdk/react';import { useState } from 'react';import { Weather } from '@/components/weather';import { Stock } from '@/components/stock';
export default function Page() { const [input, setInput] = useState(''); const { messages, sendMessage } = useChat();
const handleSubmit = (e: React.FormEvent) => { e.preventDefault(); sendMessage({ text: input }); setInput(''); };
return ( <div> {messages.map(message => ( <div key={message.id}> <div>{message.role}</div> <div> {message.parts.map((part, index) => { if (part.type === 'text') { return <span key={index}>{part.text}</span>; }
if (part.type === 'tool-displayWeather') { switch (part.state) { case 'input-available': return <div key={index}>Loading weather...</div>; case 'output-available': return ( <div key={index}> <Weather {...part.output} /> </div> ); case 'output-error': return <div key={index}>Error: {part.errorText}</div>; default: return null; } }
if (part.type === 'tool-getStockPrice') { switch (part.state) { case 'input-available': return <div key={index}>Loading stock price...</div>; case 'output-available': return ( <div key={index}> <Stock {...part.output} /> </div> ); case 'output-error': return <div key={index}>Error: {part.errorText}</div>; default: return null; } }
return null; })} </div> </div> ))}
<form onSubmit={handleSubmit}> <input type="text" value={input} onChange={e => setInput(e.target.value)} /> <button type="submit">Send</button> </form> </div> );}
By following this pattern, you can continue to add more tools and components, expanding the capabilities of your Generative UI application.
On this page
Build a Generative UI Chat Interface
Expanding Your Generative UI Application
Deploy and Scale AI Apps with Vercel.
Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.
Trusted by industry leaders: