File: convert-to-model-messages.md | Updated: 11/15/2025
Menu
v5 (Latest)
AI SDK 5.x
Model Context Protocol (MCP) Tools
Copy markdown
===========================================================================================================================
The convertToModelMessages function is used to transform an array of UI messages from the useChat hook into an array of ModelMessage objects. These ModelMessage objects are compatible with AI core functions like streamText.
app/api/chat/route.ts
import { openai } from '@ai-sdk/openai';import { convertToModelMessages, streamText } from 'ai';
export async function POST(req: Request) { const { messages } = await req.json();
const result = streamText({ model: openai('gpt-4o'), messages: convertToModelMessages(messages), });
return result.toUIMessageStreamResponse();}
import { convertToModelMessages } from "ai"
Message[]
An array of UI messages from the useChat hook to be converted
{ tools?: ToolSet, convertDataPart?: (part: DataUIPart) => TextPart | FilePart | undefined }
Optional configuration object. Provide tools to enable multi-modal tool responses, and convertDataPart to transform custom data parts into model-compatible content.
An array of ModelMessage
objects.
Array
An array of ModelMessage objects
The convertToModelMessages function supports tools that can return multi-modal content. This is useful when tools need to return non-text content like images.
import { tool } from 'ai';import { z } from 'zod';
const screenshotTool = tool({ parameters: z.object({}), execute: async () => 'imgbase64', toModelOutput: result => [{ type: 'image', data: result }],});
const result = streamText({ model: openai('gpt-4'), messages: convertToModelMessages(messages, { tools: { screenshot: screenshotTool, }, }),});
Tools can implement the optional toModelOutput method to transform their results into multi-modal content. The content is an array of content parts, where each part has a type (e.g., 'text', 'image') and corresponding data.
The convertToModelMessages function supports converting custom data parts attached to user messages. This is useful when users need to include additional context (URLs, code files, JSON configs) with their messages.
By default, data parts in user messages are filtered out during conversion. To include them, provide a convertDataPart callback that transforms data parts into text or file parts that the model can understand:
app/api/chat/route.ts
import { openai } from '@ai-sdk/openai';import { convertToModelMessages, streamText, UIMessage } from 'ai';
type CustomUIMessage = UIMessage< never, { url: { url: string; title: string; content: string }; 'code-file': { filename: string; code: string; language: string }; }>;
export async function POST(req: Request) { const { messages } = await req.json();
const result = streamText({ model: openai('gpt-4o'), messages: convertToModelMessages<CustomUIMessage>(messages, { convertDataPart: part => { // Convert URL attachments to text if (part.type === 'data-url') { return { type: 'text', text: `[Reference: ${part.data.title}](${part.data.url})\n\n${part.data.content}`, }; }
// Convert code file attachments if (part.type === 'data-code-file') { return { type: 'text', text: `\`\`\`${part.data.language}\n// ${part.data.filename}\n${part.data.code}\n\`\`\``, }; }
// Other data parts are ignored }, }), });
return result.toUIMessageStreamResponse();}
Attaching URL Content Allow users to attach URLs to their messages, with the content fetched and formatted for the model:
// Client sidesendMessage({ parts: [ { type: 'text', text: 'Analyze this article' }, { type: 'data-url', data: { url: 'https://example.com/article', title: 'Important Article', content: '...', }, }, ],});
Including Code Files as Context Let users reference code files in their conversations:
convertDataPart: part => { if (part.type === 'data-code-file') { return { type: 'text', text: `\`\`\`${part.data.language}\n${part.data.code}\n\`\`\``, }; }};
Selective Inclusion Only data parts for which you return a text or file model message part are included, all other data parts are ignored.
const result = convertToModelMessages< UIMessage< unknown, { url: { url: string; title: string }; code: { code: string; language: string }; note: { text: string }; } >>(messages, { convertDataPart: part => { if (part.type === 'data-url') { return { type: 'text', text: `[${part.data.title}](${part.data.url})`, }; }
// data-code and data-node are ignored },});
The generic parameter ensures full type safety for your custom data parts:
type MyUIMessage = UIMessage< unknown, { url: { url: string; content: string }; config: { key: string; value: string }; }>;
// TypeScript knows the exact shape of part.dataconvertToModelMessages<MyUIMessage>(messages, { convertDataPart: part => { if (part.type === 'data-url') { // part.data is typed as { url: string; content: string } return { type: 'text', text: part.data.url }; } return null; },});
On this page
Deploy and Scale AI Apps with Vercel.
Vercel delivers the infrastructure and developer experience you need to ship reliable AI-powered applications at scale.
Trusted by industry leaders: